Journal of Sol-Gel Science and Technology

, Volume 75, Issue 2, pp 298–304 | Cite as

Synthesis and physicochemical characterization of LaCr1−xCuxO3

  • K. Adaika
  • M. OmariEmail author
Original Paper


Different citrate precursor powders of lanthanum chromite doped with copper LaCr1−xCuxO3 (0 ≤ x ≤ 0.4) have been synthesized by sol–gel method. After calcination, its structural and surface characteristics have been examined by X-ray diffraction to confirm the formation of the pure perovskite phase. Fourier transform infrared, differential thermal analysis and thermogravimetric analysis results indicate that the pure orthorhombic phase was obtained at temperature above 800 °C. The structure and morphology of the samples are characterized by SEM measurements indicating that the particles have nearly spherical shapes and are agglomerated. The study of electrochemical behavior shows that the electrode with large copper content has a better electrocatalytical activity.

Graphical Abstract


Perovskite LaCr1−xCuxO3 Sol–gel method Thermal analysis Electrochemical properties 


  1. 1.
    Ponce S, Peña MA, Fierro JLG (2000) Appl Catal B 24:193–205CrossRefGoogle Scholar
  2. 2.
    Leanza R, Rossetti I, Fabbrini L, Oliva C, Forni L (2000) Appl Catal B 28(1):55–64CrossRefGoogle Scholar
  3. 3.
    Russo N, Fino D, Saracco G, Specchia V (2005) J Catal 229:459–469CrossRefGoogle Scholar
  4. 4.
    Peña MA, Fierro JLG (2001) Chem Rev 101:1981–2018CrossRefGoogle Scholar
  5. 5.
    Saracco G, Scibilia G, Iannibello A, Baldi G (1996) Appl Catal B 8:229–244CrossRefGoogle Scholar
  6. 6.
    Hilpert K, Steinbrech RW, Borromand F, Teller O (2003) J Eur Ceram Soc 23:3009–3020CrossRefGoogle Scholar
  7. 7.
    Tien-Thao N, Alamdari H, Zahedi-Niaki MH, Kaliaguine S (2006) Appl Catal A 311:204–212CrossRefGoogle Scholar
  8. 8.
    Toniolo FS, Magalhaes RNSH, Perez CAC, Schmal M (2012) Appl Catal B 117–118:156–166CrossRefGoogle Scholar
  9. 9.
    Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) Appl Catal A 307:85–97CrossRefGoogle Scholar
  10. 10.
    Jia L, Gao J, Fang W, Li Q (2009) Catal Commun 10:2000–2003CrossRefGoogle Scholar
  11. 11.
    Nithya VD, Immanuel RJ, Senthilkumar ST, Sanjeeviraja C, Perelshtein I, Zitoun D, Selvan RK (2012) Mater Res Bull 47:1861–1868CrossRefGoogle Scholar
  12. 12.
    Jitaru I, Berger D, Fruth V, Novac A, Stanica N, Rusu F (2000) Ceram Inter 26:193–196CrossRefGoogle Scholar
  13. 13.
    Marcos Z, David L (2000) Chem Mater 12(9):2763–2769CrossRefGoogle Scholar
  14. 14.
    Rida K, Benabbas A, Bouremmad F, Pena MA, Sastre E, Martinez-Arias A (2007) Appl Catal A 327(2):173–179CrossRefGoogle Scholar
  15. 15.
    Taguchi H, Yamada S, Nagao M, Ichikawa Y, Tabata K (2002) Mater Res Bull 37(1):69–76CrossRefGoogle Scholar
  16. 16.
    Tascon JMD, Tejuca LG (1981) J Chem Soc, Faraday Trans 1(77):591–602CrossRefGoogle Scholar
  17. 17.
    Mali A, Ataie A (2005) Scripta Mater 53:1065–1070CrossRefGoogle Scholar
  18. 18.
    Chakrabarti N, Maiti HS (1997) Mater Lett 30:169–173CrossRefGoogle Scholar
  19. 19.
    Cullity BD (1978) Elements of X-ray diffractions. Addition Wesley, Reading 102Google Scholar
  20. 20.
    Diafi M, Omari M (2012) Bol Soc Esp Ceram Vidr 51(6):337–342CrossRefGoogle Scholar
  21. 21.
    Hsiang HI, Yen FS, Chang YH (1996) J Mater Sci 31:2417–2424CrossRefGoogle Scholar
  22. 22.
    Jung GB, Huang TJ, Huang MH, Chang CL (2001) J Mater Sci 36:5839–5844CrossRefGoogle Scholar
  23. 23.
    Zhang R, Villanueva A, Alamdari H, Kaliaguine S (2006) J Mol Catal A Chem 258:22–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratory of Molecular Chemistry and EnvironmentUniversity of BiskraBiskraAlgeria

Personalised recommendations