Journal of Sol-Gel Science and Technology

, Volume 75, Issue 2, pp 291–297 | Cite as

A crystallization and structural study of the compound Pb2V2O7 synthesized by a facile sol–gel-based chemical route

  • A. Suárez-GómezEmail author
  • Santiago J. A. Figueroa
  • Diego G. Lamas
  • Julio C. Cezar
Original Paper


In this work, we carried out the synthesis of lead(II) divanadate(V) by means of a soft chemistry reaction based on a sol–gel-derived route. The final organic precursor was heat treated (T = 400, 500, 600, 750 and 800 °C) and structurally analyzed for each temperature by taking into account the results of FTIR spectroscopy, synchrotron X-ray powder diffraction and X-ray absorption near-edge structure. As an overall result, we report a final compound with remarkable crystallographic and morphological qualities that seem to keep all its structural features in the temperature range 450–700 °C before the structure incongruently melts. As a highlight, the desired material was obtained following a highly reproducible, low-cost, low-temperature and quite straightforward chemical route. Besides, this synthesis route could also allow the appropriate integration of lead(II) divanadate(V) nanoparticles, or nanolayers, into more complex systems as well as the feasibility for being expanded to other materials.

Graphical Abstract


Divanadates Synchrotron Pb2V2O7 Sol–gel Nanoparticles 



This work has been supported by Project No. 221541/CUValles(DECyT)/P3e-2014, Project PROINPEP-2014/CUValles and Project PROMEP-NPTC No. UDG-PTC-1080. The authors would also like to thank to CNPEM, in particular to the LNNano and LNLS staff and, most of all, to Dr. C.A. Ospina Ramírez for his kind support with SEM characterizations. Besides, the help provided by Dr. C. Velásquez-Ordoñez, CUVALLES-UdG must also be acknowledged and highly appreciated. We also thank Dr. M. Saleta from Unicamp for help on XAFS acquisition.

Supplementary material

10971_2015_3698_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3397 kb)


  1. 1.
    Blonska-Tabero A, Bosacka M (2013) Comparative studies in subsolidus areas of ternary oxide systems PbO–V2O5–In2O3 and PbO–V2O5–Fe2O3. J Therm Anal Calorim 113(1):137–145. doi: 10.1007/s10973-013-2996-4 CrossRefGoogle Scholar
  2. 2.
    Bosacka M (2012) New indium lead(II) vanadate(V) in Pb2V2O7–InVO4 system and its characterization. J Alloy Compd 542:228–231. doi: 10.1016/j.jallcom.2012.07.030 CrossRefGoogle Scholar
  3. 3.
    Zhou W, Tan D, Xiao W, Song M, Chen M, Xiong X, Xu J (2012) Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa. J phys Condens matter Inst Phys J 24(43):435403. doi: 10.1088/0953-8984/24/43/435403 CrossRefGoogle Scholar
  4. 4.
    Martin LW, Zhan Q, Suzuki Y, Ramesh R, Chi M, Browning N, Mizoguchi T, Kreisel J (2007) Growth and structure of PbVO3 thin films. Appl Phys Lett 90(6):062903. doi: 10.1063/1.2435944 CrossRefGoogle Scholar
  5. 5.
    Blonska-Tabero A, Filipek E (2014) New solid solution Pb2−xSrxFeV3O11—Synthesis, homogeneity range and characterization. J Alloy Compd 587:148–152. doi: 10.1016/j.jallcom.2013.10.144 CrossRefGoogle Scholar
  6. 6.
    Guskos N, Typek J, Zolnierkiewicz G, Szymczak R, Berczynski P, Wardal K, Blonska-Tabero A (2011) Magnetic properties of a new iron lead vanadate Pb2FeV3O11. J Alloy Compd 509(32):8153–8157. doi: 10.1016/j.jallcom.2011.05.114 CrossRefGoogle Scholar
  7. 7.
    Errandonea D, Popescu C, Achary SN, Tyagi AK, Bettinelli M (2014) In situ high-pressure synchrotron X-ray diffraction study of the structural stability in NdVO4 and LaVO4. Mater Res Bull 50:279–284. doi: 10.1016/j.materresbull.2013.10.047 CrossRefGoogle Scholar
  8. 8.
    Goutaudier C, Ermeneux FS, Cohen-Adad MT, Moncorgé R, Bettinelli M, Cavalli E (1998) LHPG and flux growth of various Nd:YVO4 single crystals: a comparative characterization. Mater Res Bull 33(10):1457–1465. doi: 10.1016/s0025-5408(98)00143-3 CrossRefGoogle Scholar
  9. 9.
    Blonska-Tabero A (2010) Pb2Fe2V4O15—A new phase forming in the system FeVO4–Pb2V2O7. J Alloy Compd 508(1):42–46. doi: 10.1016/j.jallcom.2010.08.028 CrossRefGoogle Scholar
  10. 10.
    Blonska-Tabero A (2009) A new iron lead vanadate Pb2FeV3O11: synthesis and some properties. Mater Res Bull 44(8):1621–1625. doi: 10.1016/j.materresbull.2009.04.015 CrossRefGoogle Scholar
  11. 11.
    Liu H, Hu C, Wang ZL (2006) Composite-hydroxide-mediated approach for the synthesis of nanostructures of complex functional-oxides. Nano Lett 6(7):1535–1540. doi: 10.1021/nl061253e CrossRefGoogle Scholar
  12. 12.
    Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2012) ‘Universal’ Synthesis of PZT (1−x)/x Submicrometric structures using highly stable colloidal dispersions: a bottom-up approach. In: Peláiz-Barranco A (ed) Advances in Ferroelectrics. InTech. doi: 10.5772/51996
  13. 13.
    Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2010) A study on the stability of a PZT precursor solution based on the time evolution of mean particles size and pH. Mater Chem Phys 123(1):304–308. doi: 10.1016/j.matchemphys.2010.04.017 CrossRefGoogle Scholar
  14. 14.
    Tolentino HCN, Ramos AY, Alves MCM, Barrea RA, Tamura E, Cezar JC, Watanabe N (2001) A 2.3 to 25 keV XAS beamline at LNLS. J Synchrotron Radiat 8(3):1040–1046. doi: 10.1107/s0909049501005143 CrossRefGoogle Scholar
  15. 15.
    Suárez-Gómez A, Saniger-Blesa JM, Calderón-Piñar F (2011) A crystallization study of nanocrystalline PZT 53/47 granular arrays using a sol-gel based precursor. J Mater Sci Technol 27(6):489–496. doi: 10.1016/s1005-0302(11)60096-0 CrossRefGoogle Scholar
  16. 16.
    Zyryanov VV, Lapina OB (2001) Mechanochemical synthesis and structure of new phases in the Pb–V–O system. Inorg Mater 37(3):264–270. doi: 10.1023/a:1004169431601 CrossRefGoogle Scholar
  17. 17.
    Dimitrov V, Dimitriev Y (1990) Structure of glasses in PbO-V2O5 system. J Non-Cryst Solids 122(2):133–138. doi: 10.1016/0022-3093(90)91058-y CrossRefGoogle Scholar
  18. 18.
    Fotiev AA, Slobodin BV, Khodos MY (1988) Vanadaty: sostav, sintez, struktura, svoistva (Vanadates: Composition, Synthesis, Structure, Properties). Nauka, MoskvaGoogle Scholar
  19. 19.
    Kawahara A (1967) La structure cristalline de la chervetite. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 90:279–284Google Scholar
  20. 20.
    Shannon RD, Calvo C (1973) Refinement of the crystal structure of synthetic chervetite, Pb2V2O7. Can J Chem 51(1):70–76. doi: 10.1139/v73-010 CrossRefGoogle Scholar
  21. 21.
    Martin K, McCarthy G (1993) ICDD Grant-in-Aid. Card 47-1735. ICDD, North Dakota State University, Fargo, USAGoogle Scholar
  22. 22.
    Midorikawa M, Kashida H, Sawada A, Ishibashi Y (1980) Ferroelectricity in Pb3(VO4)2 crystal. J Phys Soc Jpn 49(3):1095–1097. doi: 10.1143/jpsj.49.1095 CrossRefGoogle Scholar
  23. 23.
    Salje E, Iishi K (1977) Ferroelastic phase transitions in lead phosphate–vanadate Pb3(PxV1−xO4)2. AcCrA 33(3):399–408. doi: 10.1107/s0567739477001065 Google Scholar
  24. 24.
    Baran EJ, Pedregosa JC, Aymonino PJ (1975) Das Schwingungsspektrum von Pb2V2O7. Monatsh Chem 106(5):1085–1090. doi: 10.1007/bf00906220 CrossRefGoogle Scholar
  25. 25.
    Weinstock N, Schulze H, Müller A (1973) Assignment of ν2 (E) and ν4 (F2) of tetrahedral species by the calculation of the relative Raman intensities: the vibrational spectra of VO4 3−, CrO4 2−, MoO4 2−, WO4 2−, MnO4 , TcO4 , ReO4 , RuO4, and OsO4. J Chem Phys 59(9):5063. doi: 10.1063/1.1680724 CrossRefGoogle Scholar
  26. 26.
    Baran EJ (1978) A correlation between the V—O—V bridge stretching frequencies and angle in divanadates. J Mol Struct 48(3):441–443. doi: 10.1016/0022-2860(78)87254-8 CrossRefGoogle Scholar
  27. 27.
    Wing RM, Callahan KP (1969) Characterization of metal-oxygen bridge systems. Inorg Chem 8(4):871–874. doi: 10.1021/ic50074a034 CrossRefGoogle Scholar
  28. 28.
    Brown RG, Ross SD (1972) The vibrational spectra of some condensed tetrahedral anions [X2O7]n−. Spectrochim Acta Part A 28(7):1263–1274. doi: 10.1016/0584-8539(72)80096-5 CrossRefGoogle Scholar
  29. 29.
    Hezel A, Ross SD (1967) The vibrational spectra of some divalent metal pyrophosphates. Spectrochim Acta Part A 23(5):1583–1589. doi: 10.1016/0584-8539(67)80381-7 CrossRefGoogle Scholar
  30. 30.
    Wong J, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30(10):5596–5610. doi: 10.1103/PhysRevB.30.5596 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. Suárez-Gómez
    • 1
    Email author
  • Santiago J. A. Figueroa
    • 2
  • Diego G. Lamas
    • 3
  • Julio C. Cezar
    • 2
  1. 1.Universidad de Guadalajara, Centro Universitario de Los VallesAmecaMexico
  2. 2.Brazilian Synchrotron Light Laboratory (LNLS)/Brazilian Center of Energy and Materials (CNPEM)CampinasBrazil
  3. 3.CONICET - Escuela de Ciencia y TecnologíaUniversidad Nacional de Gral. San MartínSan MartínArgentina

Personalised recommendations