Advertisement

Journal of Sol-Gel Science and Technology

, Volume 75, Issue 1, pp 152–163 | Cite as

Removal of dyes by photocatalytically active curcumin-sensitized amorphous TiO2 under visible light irradiation

  • Supat Buddee
  • Sumpun WongnawaEmail author
Original Paper

Abstract

Curcumin-sensitized amorphous TiO2 (Cur-AMO) was prepared by the sol–gel process followed by modified impregnation using freshly prepared curcumin solution. The final products were studied by several techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, surface area measurement (BET), and UV–Vis diffused reflectance spectroscopy. Experimental results revealed that the presence of curcumin did not affect the amorphous form; however, it caused bathochromic shift and decreased the BET surface area. The products showed not only high adsorption efficiency but also increased photocatalytic activity under visible light irradiation with optimal result at 7.5 wt% curcumin loading. Under visible light irradiation, curcumin molecule could act like dye-sensitizing agent by injecting the electron into the conduction band of amorphous TiO2, leading to photodegradation of pollutant in wastewater.

Graphical Abstract

Keywords

Amorphous TiO2 Photocatalyst Curcumin Dye sensitizer Visible light photodegradation Dye degradation 

Notes

Acknowledgments

This research was supported by the Center of Excellent for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission, Ministry of Education, and the Graduate School, Prince of Songkla University.

References

  1. 1.
    Govindarajan VS (1980) Crit Rev Food Sci 12:199–301CrossRefGoogle Scholar
  2. 2.
    Esatbeyoglu T, Huebbe P, Ernst IMA, Chin D, Wagner AE, Rimbach G (2012) Angew Chem Int Ed 51:5308–5332CrossRefGoogle Scholar
  3. 3.
    Qian T, Li K, Gao B, Zhu R, Wu X, Wang S (2013) Spectrosc Acta Part A 116:6–12CrossRefGoogle Scholar
  4. 4.
    Goel A, Kunnumakkara AB, Aggarwal BB (2008) Biochem Pharmacol 75:787–809CrossRefGoogle Scholar
  5. 5.
    Aggarwal BB, Harikumar KB (2009) Int J Biochem Cell Biol 41:40–59CrossRefGoogle Scholar
  6. 6.
    Baum L, Ng A (2004) J Alzheimers Dis 6:367–377Google Scholar
  7. 7.
    Srivastava RM, Singh S, Dubey SK, Misra K, Khar A (2011) Int J Immunopharmacol 11:331–341CrossRefGoogle Scholar
  8. 8.
    Sikora E, Bielak-Zmijewska A, Mosieniak G, Piwocka K (2010) Curr Pharm Des 16:884–892CrossRefGoogle Scholar
  9. 9.
    Khafif A, Hurst R, Kyker K, Fliss DM, Gil Z, Medina JE (2005) Otolaryngol Head Neck Surg 132:317–321CrossRefGoogle Scholar
  10. 10.
    Ganesh T, Kim JH, Yoon SJ, Kil BH, Maldar NN, Han JW, Han SH (2010) Mater Chem Phys 123:62–66CrossRefGoogle Scholar
  11. 11.
    Singh U, Verma S, Ghosh HN, Rath MC, Priyadarsini KI, Sharma A, Pushpa KK, Sarkar SK, Mukherjee T (2010) J Mol Catal A 318:106–111CrossRefGoogle Scholar
  12. 12.
    Saha D, Ajimsha RS, Rajiv K, Mukherjee C, Gupta M, Misra P, Kukreja LM (2014) Appl Surf Sci 315:116–123CrossRefGoogle Scholar
  13. 13.
    Hong Y, Yu M, Lin J, Cheng K, Weng W, Wang H (2014) Colloids Surf B 123:68–74CrossRefGoogle Scholar
  14. 14.
    Manzhos S, Giorgi G, Yamashita K (2015) Molecules 20:3371–3388CrossRefGoogle Scholar
  15. 15.
    Wang Q, Chen X, Yu K, Zhang Y, Cong Y (2013) J Hazard Mater 246–247:135–144CrossRefGoogle Scholar
  16. 16.
    Vu D, Li X, Li Z, Wang C (2013) J Chem Eng Data 58:71–77CrossRefGoogle Scholar
  17. 17.
    Kanna M, Wongnawa S, Sherdshoopongse P, Boonsin P (2005) Songklanakarin. J Sci Technol 27:1017–1026Google Scholar
  18. 18.
    Randorn C, Wongnawa S, Boonsin P (2004) Science Asia 30:149–156CrossRefGoogle Scholar
  19. 19.
    Sriprang P, Wongnawa S, Sirichote O (2014) J Sol-Gel Sci Technol 71:86–95CrossRefGoogle Scholar
  20. 20.
    Buddee S, Wongnawa S, Sirimahachai U, Puetpaibool W (2011) Mater Chem Phys 126:167–177CrossRefGoogle Scholar
  21. 21.
    Buddee S, Wongnawa S, Sriprang P, Sriwong C (2014) J Nanopart Res 16:1–21CrossRefGoogle Scholar
  22. 22.
    Shao P, Tian J, Zhao Z, Shi W, Gao S, Cui F (2015) Appl Surf Sci 324:35–43CrossRefGoogle Scholar
  23. 23.
    Raj KJA, Viswanathan B (2009) Indian J Chem 48A:1378–1382Google Scholar
  24. 24.
    Baiju KV, Shukla S, Sandhya KS, James J, Warrier KGK (2007) J Phys Chem C 111:7612–7622CrossRefGoogle Scholar
  25. 25.
    Prasai B, Cai B, Underwood MK, Lewis JP, Drabold DA (2012) J Mater Sci 47:7515–7521CrossRefGoogle Scholar
  26. 26.
    Yallapu MM, Jaggi M, Chauhan SC (2010) Coll Surf B 79:113–125CrossRefGoogle Scholar
  27. 27.
    Anitha A, Maya S, Deepa N, Chennazhi KP, Nair SV, Tamura H, Jayakumar R (2011) Carbohydr Polym 83:452–461CrossRefGoogle Scholar
  28. 28.
    Waranyoupalina R, Wongnawa S, Wongnawa M, Pakawatchai C, Panichayupakaranant P, Sherdshoopongse P (2009) Cent Eur J Chem 7:388–394CrossRefGoogle Scholar
  29. 29.
    Chen X, Liu L, Yu PY, Mao SS (2011) Science 331:746–750CrossRefGoogle Scholar
  30. 30.
    Xiao S, Zhao L, Leng X, Lang X, Lian J (2014) Appl Surf Sci 299:97–104CrossRefGoogle Scholar
  31. 31.
    Thapa R, Maiti S, Rana TH, Maiti UN, Chattopadhyay KK (2012) J Mol Catal A 363–364:223–229CrossRefGoogle Scholar
  32. 32.
    Bueno-Ferrer C, Parres-Esclapez S, Lozano-Castelló D, Bueno-López A (2010) J. Rare Earth 28:647–653CrossRefGoogle Scholar
  33. 33.
    Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng Y-H (2006) Appl Catal B 68:1–11CrossRefGoogle Scholar
  34. 34.
    Kadam AN, Dhabbe RS, Kokate MR, Gaikwad YB, Garadkar KM (2014) Spectrochim Acta A 133:669–676CrossRefGoogle Scholar
  35. 35.
    Kumar SSD, Mahesh A, Mahadevan S, Mandal AB (2014) Biochim Biophys Acta 1840:1913–1922CrossRefGoogle Scholar
  36. 36.
    Hariharan R, Senthilkumar S, Suganthi A, Rajarajan M (2012) Mater Res Bull 47:3090–3099CrossRefGoogle Scholar
  37. 37.
    Huang PJ, Chang H, Yeh CT, Tsai CW (1997) Thermochim Acta 297:85–92CrossRefGoogle Scholar
  38. 38.
    Kanna M, Wongnawa S, Buddee S, Dilokkhunakul K, Pinpithak P (2010) J Sol-Gel Sci Technol 53:162–170CrossRefGoogle Scholar
  39. 39.
    Halme J, Saarinen J, Lund P (2006) Sol Energy Mater Sol Cells 90:887–899CrossRefGoogle Scholar
  40. 40.
    Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) J Photochem Photobiol A 134:139–142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Chemistry and Center for Innovation in Chemistry, Faculty of SciencePrince of Songkla UniversityHat Yai, SongkhlaThailand

Personalised recommendations