Journal of Sol-Gel Science and Technology

, Volume 74, Issue 2, pp 521–527 | Cite as

Effects of Fe doping on the optical and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel route

  • Huiping Gao
  • Jianjun TianEmail author
  • Haiwu Zheng
  • Furui Tan
  • Weifeng Zhang
Original Paper


Fe-doped TiO2 films were deposited on Si(100) substrates by a sol–gel technique. X-ray diffraction measurements show that all the films contain both anatase and rutile phases, and Fe doping promotes the anatase–rutile transformation of TiO2 films. The optical constants of the films were attained by tackling spectroscopic ellipsometry data. With increasing Fe content, the refractive indices n values at 2 eV photon energy first increases, then decreases, and finally increases again, and the optical band gap of the films sharply reduces from 3.60 to 3.30 eV. These results may be not only related to Fe contents but also to the phase composition changed by Fe doping. In addition, the undoped TiO2 film showed feeble ferromagnetic character. Ferromagnetic behaviors were clearly observed for x = 0.01 Fe-doped TiO2 film. When x > 0.01, the magnetizations of the samples, firstly decrease and then increase with the increment Fe content, which may be due to an anatase-to-rutile junction destroying an F-center bound magnetic polaron.

Graphical Abstract

The n values at 2 eV photon energy first increases, then decreases, and finally increases again with the increase of Fe composition, which suggested the complicated polarity mechanism of the present samples. The abnormal changes of refractive indices may be related to not only Fe doping but also the outcome of the anatase/rutile junctions


TiO2 Phase transition Magnetic property Optical property 



The authors are grateful to Jinzhong Zhang, Shijiang Liu and Ping Yu for the technical support. This work was supported by Postdoctoral Science Foundation of Henan Province (2012021), Foundation of He’nan Educational Committee (14B140022), and the National Natural Science Foundation of China (61306019, 51372069, 60990312 and 61076060).


  1. 1.
    Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  2. 2.
    Lin HJ, Yang TS, Hsi CS, Wang MC, Lee KC (2014) Optical and photocatalytic properties of Fe3+-doped TiO2 thin films prepared by a sol–gel spin coating. Ceram Int 40:10633–10640CrossRefGoogle Scholar
  3. 3.
    George S, Pokhrel S, Ji Z, Henderson BL, Xia T, Li L, Zink JI, Nel AE, Madler L (2011) Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J Am Chem Soc 133:11270–11278CrossRefGoogle Scholar
  4. 4.
    Tian J, Gao H, Kong H, Yang P, Zhang W, Chu J (2013) Influence of transition metal doping on the structural, optical, and magnetic properties of TiO2 films deposited on Si substrates by a sol–gel process. Nanoscale Res Lett 8:533CrossRefGoogle Scholar
  5. 5.
    Kong EH, Yoon YH, Chang YJ, Jang HM (2014) Hybrid photoelectrode by using vertically aligned rutile TiO2 nanowires inlaid with anatase TiO2 nanoparticles for dye-sensitized solar cells. Mater Chem Phys 143:1440–1445CrossRefGoogle Scholar
  6. 6.
    Patel SKS, Kurian S, Gajbhiye NS (2013) Room-temperature ferromagnetism of Fe-doped TiO2 nanoparticles driven by oxygen vacancy. Mater Res Bull 48:655–660CrossRefGoogle Scholar
  7. 7.
    Hong NH, Sakai J, Prellier W, Hassini A, Ruyter A, Gervais F (2004) Ferromagnetism in transition-metal-doped TiO2 thin films. Phys Rev B 70:195204CrossRefGoogle Scholar
  8. 8.
    Hanaor D, Sorrell C (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  9. 9.
    Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CRA, Powell MJ, Palgrave RG, Parkin IP, Watson GW, Keal TW, Sherwood P, Walsh A, Sokol AA (2013) Band alignment of rutile and anatase TiO2. Nat Mater 12:798–801CrossRefGoogle Scholar
  10. 10.
    Nair PB, Justinvictor VB, Daniel GP, Joy K, Ramakrishnan V, Kumar DD, Thomas PV (2014) Structural, optical, photoluminescence and photocatalytic investigations on Fe doped TiO2 thin films. Thin Solid Films 550:121–127CrossRefGoogle Scholar
  11. 11.
    Liu Y, Xu C, Feng Z (2014) Characteristics and anticorrosion performance of Fe-doped TiO2 films by liquid phase deposition method. Appl Surf Sci 314:392–399CrossRefGoogle Scholar
  12. 12.
    Mohamed SH, El-Hagary M, Althoyaib S (2013) Growth of undoped and Fe doped TiO2 nanostructures and their optical and photocatalytic properties. Appl Phys A 111:1207–1212CrossRefGoogle Scholar
  13. 13.
    Bapna K, Choudhary RJ, Pandey SK, Phase DM, Sharma SK, Knobel M (2011) Electronic depiction of magnetic origin in undoped and Fe doped TiO2–d epitaxial thin films. Appl Phys Lett 99:112502CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Shen Y, Gu F, Wu M, Xie Y, Zhang J (2009) Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Appl Surf Sci 256:85–89CrossRefGoogle Scholar
  15. 15.
    Xu C, Huang J, Tan X, Yu T, Cui Z, Zhao L (2010) Preparation, characteristics, and photocatalytic tests of Fe-doped TiO2 films prepared by a sol–gel drain coating via homemade devices. J Disper Sci Technol 31:1732–1739CrossRefGoogle Scholar
  16. 16.
    Wellia DV, Xu QC, Sk MA, Lim KH, Lim TM, Tan TTY (2011) Experimental and theoretical studies of Fe-doped TiO2 films prepared by peroxo sol–gel method. Appl Catal A 401:98–105CrossRefGoogle Scholar
  17. 17.
    Nakaruk A, Lin CYW, Koshy P, Sorrell CC (2012) Iron doped Titania thin films prepared by spin coating. Adv Appl Ceram 111:129–133CrossRefGoogle Scholar
  18. 18.
    Nakaruk A, Lin CYW, Channei D, Koshy P, Sorrell CC (2012) Fe-doped and Mn-doped titanium dioxide thin films. J Sol-Gel Sci Technol 61:175–178CrossRefGoogle Scholar
  19. 19.
    Lin CYW, Channei D, Koshy P, Nakaruk A, Sorrell CC (2012) Effect of Fe doping on TiO2 films prepared by spin coating. Ceram Int 38:3943–3946CrossRefGoogle Scholar
  20. 20.
    Gu JJ, Sun HY, Liu LH, Qi YK, Xu Q (2012) Influence of structural phase transition on Ferromagnetism in Fe-doped TiO2 thin films. Acta Phys Sin 61:017501 (In Chinese)Google Scholar
  21. 21.
    Zhang Y, Li Q (2013) Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange. Solid State Sci 16:16–20CrossRefGoogle Scholar
  22. 22.
    Jiang YB, Mi WB, Jiang EY, Bai HL (2009) Structure, optical, and magnetic properties of facing-target reactive sputtered Ti1−xFexO2−δ films. J Vaccum Sci Technol A 27:1172–1177CrossRefGoogle Scholar
  23. 23.
    Wang XH, Li JG, Kamiyama H, Katada M, Ohashi N, Moriyoshi Y, Ishigaki T (2005) Pyrogenic iron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. J Am Chem Soc 127:10982–10990CrossRefGoogle Scholar
  24. 24.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy, 2nd edn. Perkin Elmer, Eden Prairie, MNGoogle Scholar
  25. 25.
    Rath C, Mohanty P, Pandey AC, Mishra NC (2009) Oxygen vacancy induced structural phase transformation in TiO2 nanoparticles. J Phys D Appl Phys 42:205101CrossRefGoogle Scholar
  26. 26.
    Kallel W, Bouattour S, Ferreira LFV, Botelho do Rego AM (2009) Synthesis, XPS and luminescence (investigations) of Li+ and/or Y3+ doped nanosized titanium oxide. Mater Chem Phys 114:304–308CrossRefGoogle Scholar
  27. 27.
    Gao D, Zhang J, Yang G, Zhang J, Shi Z, Qi J, Zhang Z, Xue D (2010) Ferromagnetism in ZnO nanoparticles induced by doping of a nonmagnetic element: Al. J Phys Chem C 114:13477–13481CrossRefGoogle Scholar
  28. 28.
    Tian J, Gao H, Deng H, Sun L, Kong H, Yang P, Chu J (2013) Structural, magnetic and optical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates by sol–gel process. J Alloy Compd 581:318–323CrossRefGoogle Scholar
  29. 29.
    Lin YB, Yang YM, Zhuang B, Huang SL, Wu LP, Huang ZG, Zhang FM, Du YW (2008) Ferromagnetism of Co-doped TiO2 films prepared by plasma enhanced chemical vapour deposition (PECVD) method. J Phys D Appl Phys 41:195007CrossRefGoogle Scholar
  30. 30.
    Hu ZG, Li WW, Wu JD, Sun J, Shu QW, Zhong XX, Zhu ZQ, Chu JH (2008) Optical properties of pulsed laser deposited rutile titanium dioxide films on quartz substrates determined by Raman scattering and transmittance spectra. Appl Phys Lett 93:181910CrossRefGoogle Scholar
  31. 31.
    Jing Y, Yanqing G, Zhiming H, Xiangjian M, Mingrong S, Hao Y, Jinglan S, Junhao C (2009) Dielectric functions of ferroelectric Pb0.5Sr0.5TiO3 film determined by transmittance spectroscopy. J Phys D Appl Phys 42:215403CrossRefGoogle Scholar
  32. 32.
    Cardona M, Harbeke G (1965) Optical properties and band structure of wurtzite-type crystals and rutile. Phys Rev 137:A1467–A1476CrossRefGoogle Scholar
  33. 33.
    Chu JH, Sher A (2008) Physics and properties of narrow gap semiconductors. Springer, New YorkGoogle Scholar
  34. 34.
    Jiang LF, Shen WZ, Yang HF, Ogawa H, Guo QX (2004) Temperature effects on optical properties of InN thin films. Appl Phys A 78:89–93CrossRefGoogle Scholar
  35. 35.
    Bussmann-Holder A (1989) Interplay of polarizability and ionicity in IV–VI compounds. Phys Rev B 40:11639–11643CrossRefGoogle Scholar
  36. 36.
    Hu ZG, Li YW, Zhu M, Zhu ZQ, Chu JH (2008) Composition dependence of dielectric function in ferroelectric BaCoxTi1−xO3 films grown on quartz substrates by transmittance spectra. Appl Phys Lett 92:081904CrossRefGoogle Scholar
  37. 37.
    Ting CC, Chen SY, Liu DM (2000) Structural evolution and optical properties of TiO2 thin films prepared by thermal oxidation of sputtered Ti films. J Appl Phys 88:4628–4633CrossRefGoogle Scholar
  38. 38.
    Zhang J, Chen X, Shen Y, Li Y, Hu Z, Chu J (2011) Synthesis, surface morphology, and photoluminescence properties of anatase iron-doped titanium dioxide nano-crystalline films. Phys Chem Chem Phys 13:13096–13105CrossRefGoogle Scholar
  39. 39.
    Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023CrossRefGoogle Scholar
  40. 40.
    Bahadur N, Pasricha R, Govind, Chand S, Kotnala RK (2012) Effect of Ni doping on the microstructure and high Curie temperature ferromagnetism in sol–gel derived titania powders. Mater Chem Phys 133:471–479Google Scholar
  41. 41.
    Tang H, Prasad K, Sanjinès R, Schmid PE, Lévy F (1994) Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 75:2042–2047CrossRefGoogle Scholar
  42. 42.
    Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Huiping Gao
    • 1
  • Jianjun Tian
    • 1
    • 2
    Email author
  • Haiwu Zheng
    • 1
    • 2
  • Furui Tan
    • 1
    • 2
  • Weifeng Zhang
    • 1
    • 2
  1. 1.School of Physics and ElectronicsHenan UniversityKaifengChina
  2. 2.Key Laboratory of Photovoltaic Materials of Henan ProvinceHenan UniversityKaifengChina

Personalised recommendations