Advertisement

Journal of Sol-Gel Science and Technology

, Volume 73, Issue 3, pp 666–672 | Cite as

Indium tin oxide–silicon nanocrystal nanocomposite grown by aerosol assisted chemical vapour deposition

  • Shane O’BrienEmail author
  • Keith Linehan
  • Hugh Doyle
  • Andrew Kingsley
  • Chris Ashfield
  • Bettina Frank
  • Ling Xie
  • Klaus Leifer
  • Philippe Thony
  • Simon Perraud
  • Martyn E. Pemble
  • Ian M. Povey
Original Paper

Abstract

Nanocomposite films were successfully grown by aerosol-assisted chemical vapour deposition (CVD) in a single deposition step using a mixture of indium tin neodecanoate and ligand stabilised silicon nanocrystals. Samples were analysed by HRTEM and silicon nanocrystals with a density of 1.2 × 1012 cm−2 were observed. From the reconstructed 3D tomogram, the averaged distance between the nearest nanoparticles is 8.3 nm and the 3D density of nanoparticles is 1.6 × 1018 cm−3. An animation of the 3D reconstruction is supplied in the supporting information. These data show the versatility of aerosol assisted CVD in achieving a nanocomposite with such a density of silicon nanocrystals, of carefully controlled size and shape, within a polycrystalline host matrix. Therefore, meeting the density and size distribution requirements of particle inclusion in active nanocomposites for photovoltaic structures.

Graphical abstract

ITO–silicon nanocrystal nanocomposite samples were analysed by HRTEM and silicon nanocrystals with a density of 1.2 × 1012 cm−2 were observed. From the reconstructed 3D tomogram, the averaged distance between the nearest nanoparticles is 8.3 nm and the 3D density of nanoparticles is 1.6 × 1018 cm−3.

Keywords

Nanocrystal Nanocomposite Aerosol-assisted CVD HR-TEM tomography 

Notes

Acknowledgments

The authors acknowledge support from the EU funded FP7 Project ‘SNAPSUN—Semiconductor Nanomaterial for Advanced Photovoltaic Solar cells Using New concept of nanocrystal and conductive host’ and SFI PI Grant: ‘New Materials and Devices for Optical Applications via the use of Hybrid Technologies: Colloidal Crystallisation and Advanced Thin Film Deposition’—(11/PI/1117).

References

  1. 1.
    Yang M, Hong S-H (2010) J Electrochem Soc 157:J392–J396Google Scholar
  2. 2.
    Bauer T, Kolb JS, Loffler T, Mohler E, Roskos HG, Pernisz UC (2002) J Appl Phys 92:2210–2212CrossRefGoogle Scholar
  3. 3.
    Fahland M, Karlsson P, Charton C (2001) Thin Solid Films 392:334–337CrossRefGoogle Scholar
  4. 4.
    Tak YH, Kim KB, Park HG, Lee KH, Lee JR (2002) Thin Solid Films 411:12–16CrossRefGoogle Scholar
  5. 5.
    Ullal HS, Zweibel K, Von Roedern B (2002) In: Proceedings of the 29th IEEE photovoltaic specialists conference, pp 472–477Google Scholar
  6. 6.
    Plá J, Tamasi M, Rizzoli R, Losurdo M, Centurioni E, Summonte C, Rubinelli F (2003) Thin Solid Films 425:185–192CrossRefGoogle Scholar
  7. 7.
    Minami T, Ida S, Miyata T (2002) Thin Solid Films 416:92–96CrossRefGoogle Scholar
  8. 8.
    Hoshi Y, Ohki R (1999) Electrochim Acta 44:3927–3932CrossRefGoogle Scholar
  9. 9.
    Teixeira V, Cui HN, Meng LJ, Fortunato E, Martins R (2002) Thin Solid Films 420–421:70–75CrossRefGoogle Scholar
  10. 10.
    Mientus R, Ellmer K (2001) Surf Coat Technol 142–144:748–754CrossRefGoogle Scholar
  11. 11.
    Nath P, Bunshah RF, Basol BM, Sraffsud OM (1980) Thin Solid Films 72:463CrossRefGoogle Scholar
  12. 12.
    Maki K, Komiya N, Suzuki A (2003) Thin Solid Films 445:224–228CrossRefGoogle Scholar
  13. 13.
    Stoica TF, Teodorescu VS, Blanchin MG, Stoica TA, Gartner M, Losurdo M, Zaharescu M (2003) Mater Sci Eng B 101:222–226CrossRefGoogle Scholar
  14. 14.
    Kim S-S, Choi S-Y, Park C-G, Jin H-W (1999) Thin Solid Films 347:155–160CrossRefGoogle Scholar
  15. 15.
    Tsai M-S, Wang C-L, Hon M-H (2003) Surf Coat Technol 172:95–101CrossRefGoogle Scholar
  16. 16.
    Shigeno E, Seki S, Shimizu K, Sawada Y, Ogawa M, Shida A, Ide M, Yajima A, Yoshinaka A (2003) Surf Coat Technol 169–170:566–570CrossRefGoogle Scholar
  17. 17.
    Zhao J, Wu S, Liu J, Liu H, Gong S, Zhou D (2010) Sens Actuators B 145:788–793CrossRefGoogle Scholar
  18. 18.
    Bruk L, Fedorov V, Sherban D, Simashkevich A, Usatii I, Bobeico E, Morvillo P (2009) Mater Sci Eng B 159–160:282–285Google Scholar
  19. 19.
    Ait Aouaj M, Diaz R, Belayachi A, Rueda F, Abd-Lefdil M (2009) Mater Res Bull 44:1458–1461CrossRefGoogle Scholar
  20. 20.
    Kondo T, Sawada Y, Akiyama K, Funakubo H, Kiguchi T, Seki S, Wang MH, Uchida T (2008) Thin Solid Films 516:5864–5867CrossRefGoogle Scholar
  21. 21.
    Suzuki A, Maki K (2006) Chem Vap Depos 12:608–613CrossRefGoogle Scholar
  22. 22.
    Chandrasekhar R, Choy KL (2001) Thin Solid Films 398–399:59–64CrossRefGoogle Scholar
  23. 23.
    Hou XH, Choy KL (2006) Chem Vap Depos 12(10):583–596Google Scholar
  24. 24.
    Gordon R (1997) J Non-Cryst Solids 218:81–91CrossRefGoogle Scholar
  25. 25.
    McCurdy RJ (1999) Thin Solid Films 351(1–2):66–72Google Scholar
  26. 26.
    Palgrave RG, Parkin IP (2006) J Am Chem Soc 128(5):1587–1597Google Scholar
  27. 27.
    Crick CR, Parkin IP (2011) J Mater Chem 21:9362–9366CrossRefGoogle Scholar
  28. 28.
    Crick CR, Parkin IP (2011) Thin Solid Films 519:2181–2186CrossRefGoogle Scholar
  29. 29.
    Marchand P, Hassan IA, Parkin IP, Carmalt CJ (2013) Dalton Trans 42:9406–9422CrossRefGoogle Scholar
  30. 30.
    Binions R, Piccirillo C, Palgrave RG, Parkin IP (2008) Chem Vap Depos 14(1–2):33–39CrossRefGoogle Scholar
  31. 31.
    Palgrave Robert G, Parkin IV (2008) Gold Bull 41(1):66–69CrossRefGoogle Scholar
  32. 32.
    Sheel DW, Brook LA, Yates HM (2008) Chem Vap Depos 14(1–2):14–24Google Scholar
  33. 33.
    Crick CR, Bear JC, Southern P, Parkin IP (2013) J Mater Chem A 1:4336CrossRefGoogle Scholar
  34. 34.
    Conibeer G, Jiang C, Konig D, Shrestha S, Walsh T, Green M (2008) Thin Solid Films 516:6968CrossRefGoogle Scholar
  35. 35.
    Solar generation V (2008) EPIAGoogle Scholar
  36. 36.
    Jäger-Waldau A (2008) PV status report 2008, Institute for Energy, Joint Research Center. EUR - Scientific and Technical Research series - ISSN 1018-5593. http://www.eurosfaire.prd.fr/7pc/doc/1299661785_lbna23604enc_001.pdf
  37. 37.
    King et al (2007) Appl Phys Lett 90:183516CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Perret-Tran-Van S, Makasheva K, Despax B, Bonafos C, Coulon PE, Paillard V (2010) Nanotechnology 21:285605CrossRefGoogle Scholar
  40. 40.
    Kurokawa Y, Miyajima S, Yamada A, Konagai M (2006) Jpn J Appl Phys 45:1064CrossRefGoogle Scholar
  41. 41.
    Kunle M, Kaltenbach T, Loper P, Hartel A, Janz S, Eibl O, Nickel KG (2010) Thin Solid Films 519:151CrossRefGoogle Scholar
  42. 42.
    Perraud S, Quesnel E, Parola S, Barbé J, Muffato V, Faucherand P, Morin C, Jarolimek K, Van Swaaij RACMM, Zeman M, Richards S, Doyle H, Linehan K, O’Brien S, Povey IM, Pemble ME, Xie L, Leifer K, Makasheva K, Despax B (2013) Phys Stat Solidi A 210:649–657CrossRefGoogle Scholar
  43. 43.
    Linehan K, Doyle H (2013) MRS Symp Proc 1546:mrss13-1546-l06-48Google Scholar
  44. 44.
    Barlow F, Naby MA, Joshi A, Elshabini-Riad A (1994) Sol Energy Mater Sol Cells 33:63–71CrossRefGoogle Scholar
  45. 45.
  46. 46.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) J Struct Biol 116:71CrossRefGoogle Scholar
  47. 47.
    Mastronarde DN (1997) J Struct Biol 120:343CrossRefGoogle Scholar
  48. 48.
    McIntosh R, Nicastro D, Mastronarde D (2005) Trends Cell Biol 15:43–51CrossRefGoogle Scholar
  49. 49.
    Dohnalova K, Gregorkiewicz T, Kůsová K (2014) J Phys Condens Matter 26:173201Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Shane O’Brien
    • 1
    Email author
  • Keith Linehan
    • 2
  • Hugh Doyle
    • 2
  • Andrew Kingsley
    • 3
  • Chris Ashfield
    • 3
  • Bettina Frank
    • 3
  • Ling Xie
    • 4
  • Klaus Leifer
    • 4
  • Philippe Thony
    • 5
  • Simon Perraud
    • 6
  • Martyn E. Pemble
    • 1
  • Ian M. Povey
    • 1
  1. 1.Advanced Materials and Surfaces GroupTyndall National Institute-University College CorkCorkIreland
  2. 2.Nanotechnology GroupTyndall National Institute-University College CorkCorkIreland
  3. 3.SAFC HitechWirralUK
  4. 4.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  5. 5.INES R.D.ILaboratoire des Composants Photovoltaïques (CEA)Le Bourget du LacFrance
  6. 6.CEA, LITENGrenoble Cedex 9France

Personalised recommendations