Journal of Sol-Gel Science and Technology

, Volume 72, Issue 3, pp 655–662 | Cite as

Fe-lactate mediated formation of ZnO sols and self-organized nanorod assemblies

  • Claudia Aparicio
  • Jan Filip
  • Karolina Machalova-Siskova
  • Miroslav Mashlan
  • Lubomir SpanhelEmail author
Brief Communication


Hot ethanolic mixtures of hydrated Zn(II)- and Fe(II)-carboxylates (acetate and lactate) react to form yellow-orange colored Fe(III)xZnyOzOHw heteroclusters showing pronounced electronic resonances in the optical UV absorption spectra. On the addition of LiOH to these polymolecular sols, stable nanoparticulate Fe(III)–ZnO colloids are formed. During colloidal growth, 2–4 nm sized weakly crystallized Wurtzite nanoparticles are exclusively formed even in the presence of high Fe content up to 20 at.%. The presence of Fe(III) in the ZnO condensation process retards the nanoparticle growth and blocks the thermal crystallization and size enhancement up to 250 °C. The produced 0.5 M Fe(III)–ZnO sols are useful for film formation processes. From atomic force microscopy-AFM, scanning electron microscopy-SEM and X-ray diffraction-XRD studies, we note important differences in shape and morphology of the thermally annealed Fe(III)–ZnO layers depending on the iron carboxylate employed. Surprisingly, Fe(II)-lactate derived coatings are carrying vertically oriented cone-shaped aggregates composed of 60–120 nm long primary nanorods. Contrary, Fe(II)-acetate based synthesis gave sand-dune like film morphologies containing spherical 12 nm sized nanocrystallites. All film samples possess mesoporosity with pore size ranging between 5 and 20 nm.


Nanoparticles Nanorods ZnO Fe-doped ZnO Sol–gel coatings 



The authors acknowledge the support by the OPRDI—European Regional Development Fund (Projects CZ.1.05/2.1.00/03.0058 of the Ministry of Education, Youth and Sports of the Czech Republic). CA is grateful to Palacky University of Olomouc for the possibility to pass short research periods at the University of Rennes 1. LS is on detachment from the University of Rennes 1 at the CEITEC-Masaryk University in Brno and thanks for the financial support (CZ.1.05/1.1.00/02.0068). We thank Klara Čépe and Jens Froning for taking the SEM and AFM images of our film samples.


  1. 1.
    Farley NRS, Staddon CR, Zhao L et al (2004) Sol–gel formation of ordered nanostructured doped ZnO films. J Mater Chem 14:1087–1092. doi: 10.1039/b313271d CrossRefGoogle Scholar
  2. 2.
    Toscani S, Hernandez O, Aparicio C, Spanhel L (2014) Glass formation and confined melting in sol-gel derived nano-ZnO aggregates. J Sol-Gel Sci Technol 69:457–463CrossRefGoogle Scholar
  3. 3.
    Bloh JZ, Dillert R, Bahnemann DW (2013) Zinc oxide photocatalysis: influence of iron and titanium doping and origin of the optimal doping ratio. ChemCatChem 5:774–778. doi: 10.1002/cctc.201200558 CrossRefGoogle Scholar
  4. 4.
    Cai Y, Fan H, Xu M et al (2013) Fast economical synthesis of Fe-doped ZnO hierarchical nanostructures and their high gas-sensing performance. CrystEngComm 15:7339–7345. doi: 10.1039/c3ce40915e CrossRefGoogle Scholar
  5. 5.
    Mishra AK, Das D (2010) Investigation on Fe-doped ZnO nanostructures prepared by a chemical route. Mater Sci Eng B 171:5–10. doi: 10.1016/j.mseb.2010.03.045 CrossRefGoogle Scholar
  6. 6.
    Ahmed F, Kumar S, Arshi N et al (2012) Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm 14:4016–4026. doi: 10.1039/c2ce25227a CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Ram MK, Stefanakos EK, Goswami DY (2013) Enhanced photocatalytic activity of iron doped zinc oxide nanowires for water decontamination. Surf Coat Technol 217:119–123. doi: 10.1016/j.surfcoat.2012.12.001 CrossRefGoogle Scholar
  8. 8.
    Goktas A, Mutlu IH, Yamada Y (2013) Influence of Fe-doping on the structural, optical, and magnetic properties of ZnO thin films prepared by sol–gel method. Superlattices Microstruct 57:139–149. doi: 10.1016/j.spmi.2013.02.010 CrossRefGoogle Scholar
  9. 9.
    Chelouche A, Djouadi D, Aksas A (2013) Study of structural and optical properties of iron doped ZnO thin films prepared by sol-gel. Eur Phys J Appl Phys 64:10304–10308. doi: 10.1051/epjap/2013130336 CrossRefGoogle Scholar
  10. 10.
    Xu L, Li X (2010) Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J Cryst Growth 312:851–855. doi: 10.1016/j.jcrysgro.2009.12.062 CrossRefGoogle Scholar
  11. 11.
    Singh A, Saini S, Kumar D et al (2014) Influence of doping precursor on band gap and morphologies of sol-gel deposited ZnMgO thin films. Phys status solidi 11:1488–1492. doi: 10.1002/pssc.201300593 CrossRefGoogle Scholar
  12. 12.
    Babikier M, Wang D, Wang J et al (2014) Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res Lett 9:199. doi: 10.1186/1556-276X-9-199 CrossRefGoogle Scholar
  13. 13.
    Chen XY, Fang F, Ng AMC et al (2011) Effect of doping precursors on the optical properties of Ce-doped ZnO nanorods. Thin Solid Films 520:1125–1130. doi: 10.1016/j.tsf.2011.08.022 CrossRefGoogle Scholar
  14. 14.
    Spanhel L (2006) Colloidal ZnO nanostructures and functional coatings: a survey. J Sol-Gel Sci Technol 39:7–24. doi: 10.1007/s10971-006-7302-5 CrossRefGoogle Scholar
  15. 15.
    Xiong H-M, Wang Z-D, Liu D-P et al (2005) Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity. Adv Funct Mater 15:1751–1756. doi: 10.1002/adfm.200500167 CrossRefGoogle Scholar
  16. 16.
    Sakohara S, Ishida M, Anderson MA (1998) Visible luminescence and surface properties of nanosized ZnO colloids prepared by hydrolyzing zinc acetate. J Phys Chem B 102:10169–10175. doi: 10.1021/jp982594m CrossRefGoogle Scholar
  17. 17.
    Famengo A, Anantharaman S, Ischia G et al (2009) Facile and reproducible synthesis of nanostructured colloidal ZnO nanoparticles from zinc acetylacetonate: effect of experimental parameters and mechanistic investigations. Eur J Inorg Chem 2009:5017–5028. doi: 10.1002/ejic.200900506 CrossRefGoogle Scholar
  18. 18.
    Nakamoto K (2009) Infrared and raman spectra of inorganic and coordination compounds. Applications in Coordination, Organometallic, and Bioinorganic Chemistry, Sixth, Part B, pp 64–67Google Scholar
  19. 19.
    Cao K, Shen X, Jing M, Zhou J (2007) Preparation of ferromagnetic metal fine fibers by organic gel-thermal reduction process. J Cent South Univ Technol 14:607–611. doi: 10.1007/s11771-007-0116-y CrossRefGoogle Scholar
  20. 20.
    Ba-Abbad MM, Kadhum AAH, Mohamad AB et al (2013) Visible light photocatalytic activity of Fe(3 +)-doped ZnO nanoparticle prepared via sol-gel technique. Chemosphere 91:1604–1611. doi: 10.1016/j.chemosphere.2012.12.055 CrossRefGoogle Scholar
  21. 21.
    Wang C, Chen Z, He Y et al (2009) Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering system. Appl Surf Sci 255:6881–6887. doi: 10.1016/j.apsusc.2009.03.008 CrossRefGoogle Scholar
  22. 22.
    Schmidt T, Müller G, Spanhel L et al (1998) Activation of 1.54 μm Er3+ fluorescence in concentrated II − VI semiconductor cluster environments. Chem Mater 10:65–71. doi: 10.1021/cm9702169 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Claudia Aparicio
    • 3
  • Jan Filip
    • 3
  • Karolina Machalova-Siskova
    • 3
  • Miroslav Mashlan
    • 3
  • Lubomir Spanhel
    • 1
    • 2
    Email author
  1. 1.Institute of Chemical Sciences Rennes ISCR, UMR CNRS 6226University of Rennes 1RennesFrance
  2. 2.Faculty of Chemistry, Central European Institute of Technology CEITECMasaryk UniversityBrnoCzech Republic
  3. 3.Departments of Experimental Physics and Physical Chemistry, Faculty of Science, Regional Centre of Advanced Technologies and Materials RCATMPalacky UniversityOlomoucCzech Republic

Personalised recommendations