Journal of Sol-Gel Science and Technology

, Volume 72, Issue 3, pp 648–654 | Cite as

Effect of Zn2+ ions on the structure, morphology and optical properties of CaWO4 microcrystals

  • M. A. P. Almeida
  • J. R. O. Lima
  • C. Morila-Santos
  • P. N. Lisboa Filho
  • M. Siu Li
  • E. Longo
  • L. S. CavalcanteEmail author
Brief Communication


The effect of zinc ions (Zn2+) on the structure, morphology and optical properties of (Ca1−x Zn x )WO4 microcrystals with (x = 0, 0.01, 0.02, and 0.03) obtained by the microwave-hydrothermal method at 170 °C for 1 h is reported in this letter. These microcrystals were characterized by X-ray diffraction (XRD), Rietveld refinement, energy dispersive X-rays spectroscopy (EDXS) and field emission scanning electron microscopy (FE-SEM) images. The optical properties were investigated by ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy and photoluminescence (PL) measurements. XRD patterns and Rietveld refinement data indicated that all the (Ca1−x Zn x )WO4 microcrystals present a tetragonal structure and a reduction of lattice parameters and unit cell volume occurs with the increase of Zn2+. EDXS data confirms that the elemental chemical composition was achieved for (Ca1−x Zn x )WO4 microcrystals. FE-SEM images showed that the replacement of Ca2+ by the Zn2+ promotes a reduction of average crystals size and considerable changes in crystal shape starting from dumbbell-like to decorative ball-like (Ca1−x Zn x )WO4 microcrystals. UV–Vis spectra evidenced a small increase in optical band gap values (from 5.72 to 5.76 eV). Finally, PL emission of (Ca1−x Zn x )WO4 microcrystals was improved until x = 0.02 due to the presence of defects at medium range and new intermediate electronic levels in the band gap associated to the Zn2+ content.

Graphical Abstract


CaWO4 Microcrystals Zinc Distortions Photoluminescence 



The Brazilian authors acknowledge the financial support of the Brazilian research financing institutions: CNPq (479644/2012-8; 304531/2013-8), FAPESP (12/18597-0; 09/50303-4; 2013/07296-2), and CAPES.

Supplementary material

10971_2014_3550_MOESM1_ESM.docx (3.2 mb)
Supplementary material 1 (DOCX 3240 kb)


  1. 1.
    Chen Y, Moon BK, Choi BC, Jeong JH, Yang HK (2013) J Am Ceram Soc 96:3596–3602CrossRefGoogle Scholar
  2. 2.
    Gong Q, Qian X, Ma X, Zhu Z (2006) Crys Growth Des 6:1821–1825CrossRefGoogle Scholar
  3. 3.
    Zhang J, Yang Y, Zhang Z, Wang P, Wang X (2014) Adv Mater 26:1071–1075CrossRefGoogle Scholar
  4. 4.
    Chen Z, Gong Q, Zhu J, Yuan YP, Qian LW, Qian XF (2009) Mater Res Bull 44:45–50CrossRefGoogle Scholar
  5. 5.
    Jiang X, Ma J, Yao Y, Sun Y, Liu Z, Ren Y, Liu J, Lin B (2009) Ceram Int 24:3525–3528CrossRefGoogle Scholar
  6. 6.
    Li N, Gao F, Hou L, Gao D (2010) J Phys Chem C 114:16114–16121CrossRefGoogle Scholar
  7. 7.
    Almeida MAP, Cavalcante LS, Siu Liu M, Varela JA, Longo E (2012) J Inorg Organomet Polym 22:264–271CrossRefGoogle Scholar
  8. 8.
    Zhang J, Wang Y, Li S, Wang X, Huang F, Xie A, Shen Y (2011) CrystEngComm 13:5744–5750CrossRefGoogle Scholar
  9. 9.
    Kang SJ, Hwang YS, Park JM, Chae GH, Kim S, Cheon JK (2013) J Korean Phys Soc 63:1466–1472CrossRefGoogle Scholar
  10. 10.
    Kalpakli AO, Ilhan S, Kahruman C, Yusufoglu I (2013) Can Metall Q 52:348–357CrossRefGoogle Scholar
  11. 11.
    Xu W, Gao X, Zheng L, Wang P, Zhang Z, Cao W (2012) Appl Phys Express 5:072201–072203CrossRefGoogle Scholar
  12. 12.
    Lin HL, Cao J, Luo BD, Ju TY, Chen SF (2010) Imaging Sci Photochem 28:368–375Google Scholar
  13. 13.
    Baibekov EI, Zverev DG, Kurkin IN, Rodionov AA, Malkin BZ, Barbara B (2014) Opt Spectrosc 116:661–666CrossRefGoogle Scholar
  14. 14.
    Kim JN, Shin JW, Oh KM, Lee YK, Park SK, Park JK, Nam SH (2013) J Nanosci Nanotechnol 13:3455–3458CrossRefGoogle Scholar
  15. 15.
    Kuzmin A, Anspoks A, Kalinko A, Timoshenko J (2013) J Phys Conf Ser 430:012109–012112CrossRefGoogle Scholar
  16. 16.
    Rajagopala S, Bekenevb VL, Nataraja D, Mangalarajc D, Khyzhun OYu (2010) J Alloys Compd 496:61–68CrossRefGoogle Scholar
  17. 17.
    Kuzmin A, Purans J (2001) Radiat Meas 33:583–586CrossRefGoogle Scholar
  18. 18.
    Schofield PF, Redern SAT (1992) J Phys Condens Matter 5:375–388CrossRefGoogle Scholar
  19. 19.
    Sadegh M, Badiei A (2014) Res Chem Intermed 40:2007–2014CrossRefGoogle Scholar
  20. 20.
    Khobragade N, Sinha E, Rout SK, Kar M (2013) Ceram Int 39:9627–9635CrossRefGoogle Scholar
  21. 21.
    Cho SW (2013) Bull Korean Chem Soc 34:2769–2773CrossRefGoogle Scholar
  22. 22.
    Basu S, Naidu BS, Viswanadh B, Sudarsan V, Jha SN, Bhattacharyya D, Vatsa RK (2014) RSC Adv 4:15606–15612CrossRefGoogle Scholar
  23. 23.
    Sivers MV, Ciemniak C, Erb A, Feilitzsch FV, Gütlein A, Lanfranchi JC, Lepelmeier J, Münster A, Potzel W, Roth S, Strauss R, Thalhammer U, Wawoczny S, Willers M, Zöller A (2012) Opt Mater 34:1843–1848CrossRefGoogle Scholar
  24. 24.
    Yu J, Huang K, Yuan L, Feng S (2014) New J Chem 38:1441–1445CrossRefGoogle Scholar
  25. 25.
    Du C, Lang F, Su Y, Liu Z (2013) J Colloid Interface Sci 394:94–99CrossRefGoogle Scholar
  26. 26.
    Hu W, Tong W, Li L, Zheng J, Li G (2011) Phys Chem Chem Phys 13:11634–11643CrossRefGoogle Scholar
  27. 27.
    Cavalcante LS, Longo VM, Sczancoski JC, Almeida MAP, Batista AA, Varela JA, Orlandi MO, Longo E, Siu Li M (2012) CrystEngComm 14:853–868CrossRefGoogle Scholar
  28. 28.
    Bubank RD (1965) Acta Cryst 18:88–97CrossRefGoogle Scholar
  29. 29.
    Rietveld HM (1969) J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  30. 30.
    Larson AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los. Alamos National Laboratory Report LAUR 86–748Google Scholar
  31. 31.
    Momma K, Izumi F (2011) J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  32. 32.
    Penn RL, Banfield JF (1998) Am Mineral 83:1077–1082Google Scholar
  33. 33.
    Cavalcante LS, Sczancoski JC, Tranquilin RL, Varela JA, Longo E, Longo E (2009) Particuology 7:353–362CrossRefGoogle Scholar
  34. 34.
    Liu S, Tian S, Xing R (2011) CrystEngComm 13:7258–7261CrossRefGoogle Scholar
  35. 35.
    Wang WS, Zhen L, Xu CY, Yang L, Shao WZ (2008) J Phys Chem C 112:19390–19398CrossRefGoogle Scholar
  36. 36.
    Zheng J, Huang F, Yin S, Wang Y, Lin Z, Wu X, Zhao Y (2010) J Am Chem Soc 132:9528–9530CrossRefGoogle Scholar
  37. 37.
    Tian Y, Chen B, Yu H, Hu R, Li X, Sun J, Cheng L, Zhong H, Zhang J, Zheng Y, Yu T, Huang L (2011) J Colloid Interface Sci 360:586–592CrossRefGoogle Scholar
  38. 38.
    Kubelka P, Munk-Aussig F (1931) Zeit Für Tech Physik 12:593–601Google Scholar
  39. 39.
    Gracia L, Longo VM, Cavalcante LS, Beltrán A, Avansi W, Li MS, Mastelaro VR, Varela JA, Longo E, Andrés J (2011) J Appl Phys 110:043501–043511CrossRefGoogle Scholar
  40. 40.
    Yang Y, Wang X, Liu B (2014) NANO 9:1450008–1450013CrossRefGoogle Scholar
  41. 41.
    Li Y, Wang Z, Sun L, Wang Z, Wang S, Liu X, Wang Y (2014) Mater Res Bull 50:36–41CrossRefGoogle Scholar
  42. 42.
    Boyle TJ, Yang P, Hattar K, Hernandez-Sanchez BA, Neville ML, Hoppe S (2014) Chem Mater 26:965–975CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. A. P. Almeida
    • 1
  • J. R. O. Lima
    • 1
  • C. Morila-Santos
    • 2
  • P. N. Lisboa Filho
    • 3
  • M. Siu Li
    • 4
  • E. Longo
    • 5
  • L. S. Cavalcante
    • 6
    Email author
  1. 1.Coordenação de Ciências e TecnologiaUniversidade Federal do MaranhãoSão LuísBrazil
  2. 2.Departamento de FísicaUniversidade Federal do CearáFortalezaBrazil
  3. 3.MAv–DF UNESP-Universidade Estadual PaulistaBauruBrazil
  4. 4.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil
  5. 5.Instituto de QuímicaUNESP (Universidade Estadual Paulista)AraraquaraBrazil
  6. 6.CCN-DQ-GERATECUniversidade Estadual do PiauíTeresinaBrazil

Personalised recommendations