Journal of Sol-Gel Science and Technology

, Volume 73, Issue 1, pp 22–31 | Cite as

Dielectric properties and energy storage performance of CCTO/polycarbonate composites: influence of CCTO synthesis route

  • Md. Sayful Islam
  • W. Michael Chance
  • Hans-Conrad zur Loye
  • Harry J. PloehnEmail author
Original Paper


This work explores the effect of CaCu3Ti4O12 (CCTO) synthetic route on CCTO/polycarbonate (PC) composite microstructure, low-field dielectric properties (εeff and tan δ), and high-field polarization behavior. CCTO was synthesized via the traditional solid-state route and a wet chemical sol–gel route. PXRD, FE-SEM and BET analysis results show that sol–gel CCTO particles are 20 times smaller and have 20 times more surface area per gram than solid-state CCTO particles. Solution-blended 20 vol% sol–gel CCTO/PC composites have up to 12 times higher εeff values than PC. Surprisingly, the permittivity enhancement due to the smaller sol–gel CCTO particles is not much more than that found using the larger solid-state CCTO particles. Sol–gel CCTO/PC composites show higher dielectric loss and specific conductivity than solid-state CCTO/PC composites, probably due to the presence of polyethylene glycol added as a dispersant in sol–gel CCTO synthesis. The CCTO introduces ferroelectric behavior to the composites, including significant remanent polarization, hysteresis, and energy dissipation. The stored and recovered energy densities in CCTO/PC are up to five times higher than PC at the same applied electric field, but the percentage energy loss reaches 70 %. CCTO/PC composites also have greatly reduced breakdown field strength compared to PC, so the composites’ maximum stored energy density is much less than that of PC. Thus CCTO/PC composites are promising for applications requiring high εeff values at low field strengths, but not as dielectrics for high density, pulse power energy storage.


CCTO Polycarbonate Dielectric Permittivity Polarization Energy density 



This work was supported as part of HeteroFoaM, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001061. Mary Anne Fitzpatrick, Dean, and the USC selection committee are gratefully acknowledged for supporting WMC via a College of Arts and Sciences Dean’s Dissertation Fellowship.


  1. 1.
    Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications. Academic Press, San DiegoGoogle Scholar
  2. 2.
    Osaka T, Datta M (2001) Energy storage systems for electronics. Gordon and Breach, AmsterdamGoogle Scholar
  3. 3.
    Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. IEEE Trans Dielectr Electr Insul 11(5):797–807CrossRefGoogle Scholar
  4. 4.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRefGoogle Scholar
  5. 5.
    Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn HJ, zur Loye H-C (2009) Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2(4):1697–1733CrossRefGoogle Scholar
  6. 6.
    Tanaka T (2005) Dielectric nanocomposites with insulating properties. IEEE Trans Dielectr Electr Insul 12(5):914–928CrossRefGoogle Scholar
  7. 7.
    Nelson JK (2010) Dielectric polymer nanocomposites. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Pol Phys 49(20):1421–1429CrossRefGoogle Scholar
  9. 9.
    Dang Z-M, Yuan J-K, Zha J-W, Zhou T, Li S-T, Hu G-H (2012) Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog Mater Sci 57(4):660–723CrossRefGoogle Scholar
  10. 10.
    Subramanian M, Li D, Duan N, Reisner B, Sleight A (2000) High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J Solid State Chem 151(2):323–325CrossRefGoogle Scholar
  11. 11.
    Homes C, Vogt T, Shapiro S, Wakimoto S, Ramirez A (2001) Optical response of high-dielectric-constant perovskite-related oxide. Science 293(5530):673–676CrossRefGoogle Scholar
  12. 12.
    Ramírez A, Subramanian M, Gardel M, Blumberg G, Li D, Vogt T, Shapiro SM (2000) Giant dielectric constant response in a copper-titanate. Solid State Commun 115(5):217–220CrossRefGoogle Scholar
  13. 13.
    Sinclair DC, Adams TB, Morrison FD, West AR (2002) CaCu3Ti4O12: one-step internal barrier layer capacitor. Appl Phys Lett 80(12):2153–2155CrossRefGoogle Scholar
  14. 14.
    Adams TB, Sinclair DC, West AR (2002) Giant barrier layer capacitance effects in CaCu3Ti4O12 ceramics. Adv Mater 14(18):1321–1323CrossRefGoogle Scholar
  15. 15.
    Lunkenheimer P, Krohns S, Riegg S, Ebbinghaus S, Reller A, Loidl A (2010) Colossal dielectric constants in transition-metal oxides. Eur Phys J Special Topics 180:61–89CrossRefGoogle Scholar
  16. 16.
    Ramírez M, Bueno P, Varela J, Longo E (2006) Non-ohmic and dielectric properties of a Ca2Cu2Ti4O12 polycrystalline system. Appl Phys Lett 89(21):212102CrossRefGoogle Scholar
  17. 17.
    Eršte A, Kužnik B, Malič B, Kosec M, Bobnar V (2011) Dielectric properties of CaCu3Ti4O12 ceramic thin films. Ferroelectrics 419(1):14–19CrossRefGoogle Scholar
  18. 18.
    Ramírez M, Simoes A, Felix A, Tararam R, Longo E, Varela J (2011) Electric and dielectric behavior of CaCu3Ti4O12-based thin films obtained by soft chemical method. J Alloy Compd 509(41):9930–9933CrossRefGoogle Scholar
  19. 19.
    Arbatti M, Shan X, Cheng ZY (2007) Ceramic–polymer composites with high dielectric constant. Adv Mater 19(10):1369–1372CrossRefGoogle Scholar
  20. 20.
    Thomas P, Varughese K, Dwarakanath K, Varma K (2010) Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 composites. Compos Sci Technol 70(3):539–545CrossRefGoogle Scholar
  21. 21.
    Zhang L, Shan X, Wu P, Cheng Z-Y (2012) Dielectric characteristics of CaCu3Ti4O12/P(VDF-TrFE) nanocomposites. Appl Phys A 107(3):597–602CrossRefGoogle Scholar
  22. 22.
    Shri Prakash B, Varma K (2007) Dielectric behavior of CCTO/epoxy and Al-CCTO/epoxy composites. Compos Sci Technol 67(11):2363–2368CrossRefGoogle Scholar
  23. 23.
    Amaral F, Costa L, Valente M (2011) Decrease in dielectric loss of CaCu3Ti4O12 by the addition of TiO2. J Non-Cryst Solids 357(2):775–781CrossRefGoogle Scholar
  24. 24.
    Wang F, Zhou D, Hu Y (2009) Preparation and dielectric properties of CaCu3Ti4O12–polyethersulfone composites. Phys Status Solidi A 206(11):2632–2636CrossRefGoogle Scholar
  25. 25.
    Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li J-Y, Chen Q, Yang W-T, Bai J (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21(20):2077–2082CrossRefGoogle Scholar
  26. 26.
    Thomas P, Satapathy S, Dwarakanath K, Varma K (2010) Dielectric properties of poly (vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. eXPRESS Poly Lett 4(10):632–643CrossRefGoogle Scholar
  27. 27.
    Yang W, Yu S, Sun R, Du R (2011) Nano-and microsize effect of CCTO fillers on the dielectric behavior of CCTO/PVDF composites. Acta Mater 59(14):5593–5602CrossRefGoogle Scholar
  28. 28.
    Yang C, Song H-S, Liu D-B (2013) Effect of coupling agents on the dielectric properties of CaCu3Ti4O12/PVDF composites. Compos Part B 50:180–186CrossRefGoogle Scholar
  29. 29.
    Yang Y, Zhu B-P, Lu Z-H, Wang Z-Y, Fei C-L, Yin D, Xiong R, Shi J, Chi Q-G, Lei Q-Q (2013) Polyimide/nanosized CaCu3Ti4O12 functional hybrid films with high dielectric permittivity. Appl Phys Lett 102(4):042904CrossRefGoogle Scholar
  30. 30.
    Ehrhardt C, Fettkenhauer C, Glenneberg J, Münchgesang W, Leipner HS, Diestelhorst M, Lemm S, Beige H, Ebbinghaus SG (2014) A solution-based approach to composite dielectric films of surface functionalized CaCu3Ti4O12 and P (VDF-HFP). J Mater Chem A 2(7):2266–2274CrossRefGoogle Scholar
  31. 31.
    Jha P, Arora P, Ganguli A (2003) Polymeric citrate precursor route to the synthesis of the high dielectric constant oxide, CaCu3Ti4O12. Mater Lett 57(16):2443–2446CrossRefGoogle Scholar
  32. 32.
    Brizé V, Gruener G, Wolfman J, Fatyeyeva K, Tabellout M, Gervais M, Gervais F (2006) Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics. Mater Sci Eng B-Adv 129(1):135–138CrossRefGoogle Scholar
  33. 33.
    Liu J, Sui Y, Duan C-G, Mei W-N, Smith RW, Hardy JR (2006) CaCu3Ti4O12: low-temperature synthesis by pyrolysis of an organic solution. Chem Mater 18(16):3878–3882CrossRefGoogle Scholar
  34. 34.
    Jin S, Xia H, Zhang Y, Guo J, Xu J (2007) Synthesis of CaCu3Ti4O12 ceramic via a sol–gel method. Mater Lett 61(6):1404–1407CrossRefGoogle Scholar
  35. 35.
    Liu J, Smith RW, Mei W-N (2007) Synthesis of the giant dielectric constant material CaCu3Ti4O12 by wet-chemistry methods. Chem Mater 19(24):6020–6024CrossRefGoogle Scholar
  36. 36.
    Liu L, Fan H, Fang P, Chen X (2008) Sol–gel derived CaCu3Ti4O12 ceramics: synthesis, characterization and electrical properties. Mater Res Bull 43(7):1800–1807CrossRefGoogle Scholar
  37. 37.
    Marchin L, Guillemet Fritsch S, Durand B, Levchenko AA, Navrotsky A, Lebey T (2008) Grain growth controlled giant permittivity in soft chemistry CaCu3Ti4O12 Ceramics. J Am Ceram Soc 91(2):485–489CrossRefGoogle Scholar
  38. 38.
    Masingboon C, Thongbai P, Maensiri S, Yamwong T, Seraphin S (2008) Synthesis and giant dielectric behavior of CaCu3Ti4O12 ceramics prepared by polymerized complex method. Mater Chem Phys 109(2):262–270CrossRefGoogle Scholar
  39. 39.
    Sun DL, Wu AY, Yin ST (2008) Structure, properties, and impedance spectroscopy of CaCu3Ti4O12 ceramics prepared by sol–gel process. J Am Ceram Soc 91(1):169–173CrossRefGoogle Scholar
  40. 40.
    Thomas P, Dwarakanath K, Varma K, Kutty T (2009) Synthesis of nanoparticles of the giant dielectric material, CaCu3Ti4O12 from a precursor route. J Therm Anal Calorim 95(1):267–272CrossRefGoogle Scholar
  41. 41.
    Zhu B, Wang Z, Zhang Y, Yu Z, Shi J, Xiong R (2009) Low temperature fabrication of the giant dielectric material CaCu3Ti4O12 by oxalate coprecipitation method. Mater Chem Phys 113(2):746–748CrossRefGoogle Scholar
  42. 42.
    Parra R, Savu R, Ramajo L, Ponce M, Varela J, Castro M, Bueno PR, Joanni E (2010) Sol–gel synthesis of mesoporous CaCu3Ti4O12 thin films and their gas sensing response. J Solid State Chem 183(6):1209–1214CrossRefGoogle Scholar
  43. 43.
    Yuan W-X, Hark S-K, Mei W-N (2010) Investigation of triple extrinsic origins of colossal dielectric constant in CaCu3Ti4O12 ceramics. J Electrochem Soc 157(5):G117–G120CrossRefGoogle Scholar
  44. 44.
    Yuan WX (2010) Effect of the addition of polyvinyl alcohol on electric and dielectric properties of giant dielectric constant material CaCu3Ti4O12. J Am Ceram Soc 93(10):3020–3022CrossRefGoogle Scholar
  45. 45.
    Jesurani S, Kanagesan S, Velmurugan R, Thirupathi C, Sivakumar M, Kalaivani T (2011) Nanoparticles of the giant dielectric material, calcium copper titanate from a sol–gel technique. Mater Lett 65(21):3305–3308CrossRefGoogle Scholar
  46. 46.
    Vangchangyia S, Swatsitang E, Thongbai P, Pinitsoontorn S, Yamwong T, Maensiri S, Amornkitbamrung V, Chindaprasirt P (2012) Very low loss tangent and high dielectric permittivity in pure CaCu3Ti4O12 ceramics prepared by a modified sol-gel process. J Am Ceram Soc 95(5):1497–1500CrossRefGoogle Scholar
  47. 47.
    Li Y, Liang P, Chao X, Yang Z (2013) Preparation of CaCu3Ti4O12 ceramics with low dielectric loss and giant dielectric constant by the sol–gel technique. Ceram Int 39(7):7879–7889CrossRefGoogle Scholar
  48. 48.
    Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Ann Rev Mater Res 40:131–151CrossRefGoogle Scholar
  49. 49.
    Scherrer P (1918) Estimation of the size and internal structure of colloidal particles by means of X-rays. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 2:98Google Scholar
  50. 50.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982CrossRefGoogle Scholar
  51. 51.
    Bolotnikov AV, Muzykov PG, Grekov AE, Sudarshan T (2007) Improvement of 4H-SiC power pin diode switching performance through local lifetime control using boron diffusion. IEEE Trans Electron Dev 54(6):1540–1544CrossRefGoogle Scholar
  52. 52.
    Bolotnikov A, Muzykov P, Sudarshan T (2008) Investigation of two-branch boron diffusion from vapor phase in n-type 4H-SiC. Appl Phys Lett 93(5):052101–052103CrossRefGoogle Scholar
  53. 53.
    Muzykov P, Bolotnikov A, Sudarshan T (2009) Study of leakage current and breakdown issues in 4H–SiC unterminated Schottky diodes. Solid-State Electron 53(1):14–17CrossRefGoogle Scholar
  54. 54.
    Raju G (2003) Dielectrics in electric fields. Marcel Dekker, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Md. Sayful Islam
    • 1
  • W. Michael Chance
    • 2
  • Hans-Conrad zur Loye
    • 2
  • Harry J. Ploehn
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations