Journal of Sol-Gel Science and Technology

, Volume 72, Issue 2, pp 421–427 | Cite as

Structural and optical properties of TiO2 thin films prepared by spin coating

  • I. StaEmail author
  • M. Jlassi
  • M. Hajji
  • M. F. Boujmil
  • R. Jerbi
  • M. Kandyla
  • M. Kompitsas
  • H. Ezzaouia
Original Paper


Transparent semiconducting thin films of titanium oxide (TiO2) were deposited on glass substrates by the sol–gel method and spin-coating technique. The physical properties of the prepared films were studied as a function of the number of spun-cast layers. The microstructure and surface morphology of the TiO2 films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), with respect to the film thickness. The XRD analysis reveals that the films are polycrystalline with an anatase crystal structure and a preferred grain orientation in the (101) direction. The morphological properties were investigated by AFM, which shows a porous morphology structure for the films. The optical properties of the films were characterized by UV–Visible spectrophotometry, which shows that the films are highly transparent in the visible region and their transparency is slightly influenced by the film thickness, with an average value above 80 %. The dependence of the refractive index (n), extinction coefficient (k), and absorption coefficient (α) of the films on the wavelength was investigated. A shift in the optical band gap energy of the films from 3.75 to 3.54 eV, as a function of the film thickness, has been observed.


Thin films Sol–gel Titanium oxide Physical properties Nanomaterials 


  1. 1.
    Chen TL, Furubayashi Y, Hirose Y, Hitosugi T, Shimada T, Hasegawa T (2007) J Phys D Appl Phys 40:5961CrossRefGoogle Scholar
  2. 2.
    Sakhno OV, Goldenberg LM, Stumpe J, Smornova TN (2007) Nanotechnology 18:105704CrossRefGoogle Scholar
  3. 3.
    Prajna PD, Mohapatra SK, Mano M (2008) J Phys D Appl Phys 41:245103CrossRefGoogle Scholar
  4. 4.
    O’Regan Grätzel (1991) Nature 353:737CrossRefGoogle Scholar
  5. 5.
    Kitano M, Matsuoka M, Ueshima M, Anpo M (2007) Appl Catal A Gen 325:1CrossRefGoogle Scholar
  6. 6.
    Kment Š, Gregora I, Kmentová H, Novotná P, Hubička Z, Krýsa J, Sajdl P, Dejneka A, Brunclíková M, Jastrabík L, Hrabovský M (2012) J Sol–Gel Sci Technol 63:294CrossRefGoogle Scholar
  7. 7.
    Al-Homoudi Ibrahim A, Thakur JS, Naik R, Auner GW, Newaz G (2007) Appl Surf Sci 253:8607CrossRefGoogle Scholar
  8. 8.
    San Vicente G, Morales A, Gutiérrez MT (2002) Thin Solid Films 403–404:335CrossRefGoogle Scholar
  9. 9.
    Gräzel M (1989) Heterogeneous photochemical electron transfer, XRC Press, IncGoogle Scholar
  10. 10.
    Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646CrossRefGoogle Scholar
  11. 11.
    Rath C, Mohanty P, Pandey AC, Mishra NC (2009) J Phys D Appl Phys 42:205101CrossRefGoogle Scholar
  12. 12.
    Scepanovic M. et al. (2009) Acta Phys Polonica A 116Google Scholar
  13. 13.
    Kingon AI, Maris JP, Steiffer SK (2000) Nature (London) 406:1032CrossRefGoogle Scholar
  14. 14.
    Li W, Ni C, Lin H, Huang CP, Ismat Shah S (2004) J Appl Phys 96(11):6663CrossRefGoogle Scholar
  15. 15.
    Zhang H, Banfield JF (1999) Am. Mineral Am Mineral 1999(84):528–535Google Scholar
  16. 16.
    Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527CrossRefGoogle Scholar
  17. 17.
    Kumar KP, Keizer K, Buggraaf AJ, Okubo T, Nagamoto H (1993) J Mater Chem 3:1151CrossRefGoogle Scholar
  18. 18.
    Pomoni K, Vomvas A, Trapalis CHR (2008) J Non-Cryst Solids 354:4448CrossRefGoogle Scholar
  19. 19.
    Morozova M, Kluson P, Krysa J, Zlamal M, Solcova O, Kment S, Steck T (2009) J Sol–Gel Sci Technol 52:398CrossRefGoogle Scholar
  20. 20.
    Morozova M, Kluson P, Krysa J, Gwenin Ch, Solcova O (2011) J Sol–Gel Sci Technol 58:175CrossRefGoogle Scholar
  21. 21.
    Natarajan C, Fukunaga N, Nogami G (1998) Thin Solid Films 322:6CrossRefGoogle Scholar
  22. 22.
    Masahiro Terashima, Narumi Inoue, Shigeru Kashiwabara, Ryozo Fujimoto (2001) Appl Surf Sci 169–170:535Google Scholar
  23. 23.
    Lianchao Sun, Ping Hou (2004) Thin Solid Films 455–456:525Google Scholar
  24. 24.
    Sun H, Wang C, Pang S, Li X, Tao Y, Tang H, Liu M (2008) J Non-Cryst Solids 354:1440CrossRefGoogle Scholar
  25. 25.
    Boukrouh S, Bensaha R, Bourgeois S, Finot E, Marco de Lucas MC (2008) Thin Solid Films 516:6353CrossRefGoogle Scholar
  26. 26.
    Hu L, Yoko T, Kozuka H, Sakka S (1992) Thin Solid Films 219:18CrossRefGoogle Scholar
  27. 27.
    Kajutvichyanukul P, Ananpattarachai J, Pongpom S (2005) Sci Technol Adv Mater 6:352CrossRefGoogle Scholar
  28. 28.
    Manifacier JC, Gasiot J, Fillard JP (1976) J Phys E Sci Instrum 9:1002CrossRefGoogle Scholar
  29. 29.
    Singh MK, Agarwal A, Gopal R, Swarnkar RK, Kotnala RK (2011) J Mater Chem 21:11074CrossRefGoogle Scholar
  30. 30.
    Warren BE (1990) X-ray diffraction. Dover, New York 251Google Scholar
  31. 31.
    Swanepoel R (1983) J Phys E Sci Instrum 16:1214–1222CrossRefGoogle Scholar
  32. 32.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Status Solid (b) 15:627CrossRefGoogle Scholar
  33. 33.
    Oh H, Krantz J, Litzov I, Stubhan T, Pinna L, Brabec CJ (2011) Sol Energy Mater Sol Cells 95:2194CrossRefGoogle Scholar
  34. 34.
    Teresa M, Viseu R, Isabel M, Ferreira C (1999) Vacuum 52:115CrossRefGoogle Scholar
  35. 35.
    Park YR, Kim KJ (2005) Thin Solid Films 48434Google Scholar
  36. 36.
    Urbach F (1953) J Phys Rev 92:1324CrossRefGoogle Scholar
  37. 37.
    Mott N, Davis E (1979) Electronic process in non-crystalline materials, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  38. 38.
    Abdel-Kader A, Higazy A, Elkholy M (1991) J Mater Sci Mater Electron 2:204CrossRefGoogle Scholar
  39. 39.
    Choudhury B, Choudhury A (2014) PhysicaE56 364–371Google Scholar
  40. 40.
    Yakuphanoglu F (2006) Opt Mater 29:253CrossRefGoogle Scholar
  41. 41.
    Yakuphanoglu F, Cukurovali A, Yilmaz I (2004) Phys B 353:210CrossRefGoogle Scholar
  42. 42.
    Marchand C. Characterisation of TiO2 thin films and multilayer anti-reflective coatings, Horiba Jobin Yvon UVISEL Application Note, Ref. SE—07Google Scholar
  43. 43.
    Fernández-Rodríguez M, Ramos G, Del Monte F, Levy D, Alvarado CG, Núñez A, Álvarez-Herrero A (2004) Thin Solid Films 455–456:545CrossRefGoogle Scholar
  44. 44.
    Eiamchai P, Chindaudom P, Pokaipisit A, Limsuwan P (2009) Curr Appl Phys 9:707CrossRefGoogle Scholar
  45. 45.
    Amassian A, Desjardins P, Martinu L (2004) Thin Solid Films 447–448:40CrossRefGoogle Scholar
  46. 46.
    Meng LJ, Teixeira V, Cui HN, Placido F, Xu Z, Dos Santos MP (2006) Appl Surf Sci 252:7970CrossRefGoogle Scholar
  47. 47.
    Wells AF (1984) Structural inorganic chemistry, 5th edn. Claredon Press, OxfordGoogle Scholar
  48. 48.
    Ohyama M, Kozuka H, Yoko T (1997) Thin Solid Films 306:78CrossRefGoogle Scholar
  49. 49.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, New YorkGoogle Scholar
  50. 50.
    Yoldas BE, Partlow PW (1985) Thin Solid Films 129:1CrossRefGoogle Scholar
  51. 51.
    Mechiakh R, Bensaha R (2006) C R Phys 7:464CrossRefGoogle Scholar
  52. 52.
    Alam MJ, Cameron DC (2002) J Sol–Gel Sci Technol 25:137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. Sta
    • 1
    Email author
  • M. Jlassi
    • 1
  • M. Hajji
    • 1
    • 2
  • M. F. Boujmil
    • 1
  • R. Jerbi
    • 1
  • M. Kandyla
    • 3
  • M. Kompitsas
    • 3
  • H. Ezzaouia
    • 1
  1. 1.Photovoltaic Laboratory, Research and Technology Center of EnergyBorj-Cedria Science and Technology ParkHammam-LifTunisia
  2. 2.National School for Electronics and TelecommunicationsTechnology Park of SfaxSakiet-EzzitTunisia
  3. 3.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece

Personalised recommendations