Nonhydrolytic sol–gel and gram-scale synthesis of surfactant-free maghemite nanoparticles with high surface area
- 213 Downloads
Abstract
An organic molecule was used as a surfactant for nanoparticle synthesis in liquid phase. However, residual molecules on the surface of the nanoparticles limit their catalytic applications, because the interaction of a reactant with the nanoparticle surface is interrupted. Therefore, it is favorable for catalytic applications that the organic molecule used in the synthesis of nanoparticles only induces a sol–gel reaction of the metal precursors and the formation of nanoparticles and hardly adheres to the resulting nanoparticles. Herein, we report surfactant-free and high-surface area maghemite nanostructures via nonhydrolytic sol–gel reaction. Using Fe(acetylacetonate)3 as an iron precursor and hexylamine as a solvent and growth inhibitor, Fe2O3 nanoparticles were generated by nonhydrolysis of the iron complex and condensation at 140 °C under an air atmosphere. Characterization revealed monodisperse nanoparticles with an average size of 2.3 nm and a crystalline phase of maghemite. Residual hexylamine is hardly observed, and thus their specific surface area is 403.7 m2/g. An experimental comparison of the Fe2O3 synthesis with hexylamine and benzylamine indicates that the cone angle of an organic molecule is an important factor in the synthesis of nanoparticles with a small size and high surface area.
Keywords
Nonhydrolytic reaction Surfactant-free High surface area Cone angleNotes
Acknowledgments
This work was supported by the Korea Basic Science Institute (KBSI) Grant (D34500), Korea NRF grant (2010-0029409) and Human Resources Development Program (No.20124010203270) of KETEP funded by the Korean Government Ministry of Knowledge Economy.
References
- 1.Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Chem Rev 104:3893CrossRefGoogle Scholar
- 2.Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hyeon T (2005) Angew Chem Int Ed 44:2872CrossRefGoogle Scholar
- 3.Shen C, Hui C, Yang T, Xiao C, Tian T, Bao L, Chen S, Ding H, Gao H (2008) Chem Mater 20:6939CrossRefGoogle Scholar
- 4.Liu Y, Walker ARH (2010) Angew Chem Int Ed 122:6933CrossRefGoogle Scholar
- 5.Zhou X, Xie ZX, Jiang ZY, Kuang Q, Zhang SH, Xu T, Huang RB, Zheng LS (2005) Chem Comm 5572 Google Scholar
- 6.Wang H, Uehara M, Nakamura H, Miyazaki M, Maeda H (2005) Adv Mater 17:2506CrossRefGoogle Scholar
- 7.Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PDJ (2008) J Am Chem Soc 130:11223CrossRefGoogle Scholar
- 8.Wang C, Hu Y, Lieber CM, Sun S (2008) J Am Chem Soc 130:8902CrossRefGoogle Scholar
- 9.Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Nat Mater 3:891CrossRefGoogle Scholar
- 10.Seo WS, Lee JH, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang PC, Mcconnell MV, Nishimura DG, Dai H (2006) Nat Mater 5:971CrossRefGoogle Scholar
- 11.Park MH, Li JH, Kumar A, Li G, Yang Y (2009) Adv Funct Mater 19:1241CrossRefGoogle Scholar
- 12.Huynh WU, Dittmer JJ, Alivisatos AP (2002) Science 295:2425CrossRefGoogle Scholar
- 13.Park JC, Kim J, Kwon H, Song H (2009) Adv Mater 21:803CrossRefGoogle Scholar
- 14.Lee G, Shim JH, Kang H, Nam KM, Song H, Park JT (2009) Chem Comm 5036Google Scholar
- 15.Garnweitner G, Niederberger M (2006) J Am Ceram Soc 6:1801CrossRefGoogle Scholar
- 16.Pinna N, Garnweitner G, Antonietti M, Niederberger M (2005) J Am Chem Soc 127:5608CrossRefGoogle Scholar
- 17.Kang HW, Lee SC, Kweon K, Kim HJ, Lee G (2010) J Anal Sci Technol 1:130CrossRefGoogle Scholar
- 18.Martin RL, Shirley DA (1974) J Am Chem Soc 96:5299CrossRefGoogle Scholar
- 19.Garnweitner G, Antonietti M, Niederberger M (2005) Chem Comm 397Google Scholar
- 20.Zhao ZW, Guo ZP, Liu HK (2005) J Power Sources 147:264CrossRefGoogle Scholar
- 21.Melcarne G, Marco LD, Carlino E, Martina F, Manca M, Cingolani R, Gigli G, Ciccarella G (2010) J Mater Chem 20:7248CrossRefGoogle Scholar
- 22.Rao Y, Trudeau M, Antonelli D (2006) J Am Chem Soc 128:13996CrossRefGoogle Scholar
- 23.Asadi M, Kianfar AH, Torabi S, Mohammadi K (2008) J Chem Thermodyn 40:523CrossRefGoogle Scholar
- 24.Romeo R, Arena G, Scoiaro LM (1992) Inorg Chem 31:4879CrossRefGoogle Scholar
- 25.Eckhardt B, Ortel E, Polte J, Bernsmeier D, Görke O, Strasser P, Kraehnert R (2012) Adv Mater 24:3115CrossRefGoogle Scholar
- 26.Schüth F (2003) Angew Chem Int Ed 42:3604CrossRefGoogle Scholar
- 27.Chen D, Huang F, Cheng Y-B, Caruso RA (2009) Adv Mater 21:2206CrossRefGoogle Scholar
- 28.Terribile D, Trovarelli A, Llorca J, Leitenburg CD, Dolcetti G (1998) J Catal 178:299CrossRefGoogle Scholar