Advertisement

Journal of Sol-Gel Science and Technology

, Volume 71, Issue 1, pp 96–101 | Cite as

Pd–Fe/TiO2 catalysts for phenol degradation with in situ generated H2O2

  • Mohamed Triki
  • Sandra Contreras
  • Francisco Medina
Original Paper

Abstract

This study deals with the degradation of phenol over Pd–Fe/TiO2 catalysts at mild conditions in the presence of in situ generated H2O2 from oxygen and formic acid. This catalytic system demonstrated interesting ability to oxidize phenol by Fenton process in a one-pot reaction without the addition of ferrous ion. Lower Pd content catalysts, despite producing a higher hydrogen peroxide amount for bulk purposes, did not reach the same efficiency as the 5Pd–5Fe catalyst in phenol degradation. A close interaction between Pd and iron oxide species is necessary to obtain high active catalysts. These results highlight the advantage of in situ generation of H2O2, for oxidation reactions with respect to conventional Fenton process.

Keywords

Pd–Fe catalysts Sol–gel Fenton process Phenol degradation 

Notes

Acknowledgments

The authors would like to gratefully acknowledge Mohammad S. Yalfani from the Catalytic Center of Aachen University (Germany). We express our appreciation for his valuable discussion and contribution. Mercè Moncusi Mercadé and Mariana Stefanova Stankova from Universitat Rovira i Virgili (Spain) are acknowledged for TEM measurements. F. Medina also acknowledges ICREA Academia award from Generalitat de Catalunya.

References

  1. 1.
    Pignatello JJ, Oliveros E, Mackay A (2006) Crit Rev Environ Sci Technol 36:1–84CrossRefGoogle Scholar
  2. 2.
    Pera-Titus M, Garcia-Molina V, Banos MA, Gimenez J, Esplugas S (2004) Appl Catal B 47:219–256CrossRefGoogle Scholar
  3. 3.
    Duesterberg CK, Cooper WJ, Waite TD (2005) Environ Sci Technol 39:5052–5058CrossRefGoogle Scholar
  4. 4.
    Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriaguez JJ (2005) Environ Sci Technol 39:9295–9302CrossRefGoogle Scholar
  5. 5.
    Brillas E, Sires I, Oturan M (2009) Chem Rev 109:6570–6631CrossRefGoogle Scholar
  6. 6.
    Alnaizy R, Akgerman A (2000) Adv Environ Res 4:233–244CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Olmos R, Roland U, Taufer H, Kopinke F-D, Georgi A (2009) Appl Catal B 89:356–364CrossRefGoogle Scholar
  8. 8.
    Hartmann M, Kullmann S, Keller H (2010) J Mater Chem 20:9002–9017CrossRefGoogle Scholar
  9. 9.
    Villa A, Janjic N, Spontoni P, Wang D, Sheng SD, Prati L (2009) Appl Catal A 364:221–228CrossRefGoogle Scholar
  10. 10.
    Campos-Martin JM, Blanco-Brieva G, Fierro JLG (2006) Angew Chem Int Ed 45:6962–6984CrossRefGoogle Scholar
  11. 11.
    Burch R, Ellis PR (2003) Appl Catal B 42:203–211CrossRefGoogle Scholar
  12. 12.
    Yalfani MS, Contreras S, Medina F, Sueiras JE (2008) Chem Commun 33:3885–3887 Google Scholar
  13. 13.
    Yalfani MS, Contreras S, Llorca J, Dominguez M, Sueiras JE, Medina F (2010) Phys Chem Chem Phys 12:14673–14676CrossRefGoogle Scholar
  14. 14.
    Yalfani MS, Contreras S, Medina F, Sueiras JE (2009) Appl Catal B 89:519–526CrossRefGoogle Scholar
  15. 15.
    Meng F, Li J, Cushing SK, Zhi M, Wu N (2013) J Am Chem Soc 135:10286–10289CrossRefGoogle Scholar
  16. 16.
    Meng F, Li J, Cushing SK, Bright J, Zhi M, Rowley JD, Hong Z, Manivannan A, Bristow AD, Wu N (2013) ACS Catal 3:746–751CrossRefGoogle Scholar
  17. 17.
    Bravo-Suarez JJ, Bando KK, Akita T, Fujitani T, Oyama TJ (2008) Chem Commun 28:3272–3274CrossRefGoogle Scholar
  18. 18.
    Contreras S, Yalfani MS, Medina F, Sueiras JE (2011) Water Sci Technol 63:2017–2024CrossRefGoogle Scholar
  19. 19.
    Schaub R, Wahlström E, Ronnau A, Lægsgaard E, Stensgaard I, Besenbacher F (2003) Science 299(5605):377–379CrossRefGoogle Scholar
  20. 20.
    Pinna F, Menegazzo F, Signoretto M, Canton P, Fagherazzi G, Pernicone N (2001) Appl Catal A 219:195–200CrossRefGoogle Scholar
  21. 21.
    Lieske H, Volter J (1985) J Phys Chem 89:1841–1842CrossRefGoogle Scholar
  22. 22.
    Berry FJ, Smart LE, Sai Prasad PS, Lingaiah N, Kanta Rao P (2000) Appl Catal A 204:191–201CrossRefGoogle Scholar
  23. 23.
    Xu GP, Zhu YX, Ma J, Yan HG, Xie YC (1997) Stud Surf Sci Catal 112:333–338CrossRefGoogle Scholar
  24. 24.
    Pinna F, Selva M, Signoretto M, Strukul G, Boccuzzi F, Benedetti A, Canton P, Fagherazzi G (1994) J Catal 150:356–367CrossRefGoogle Scholar
  25. 25.
    Leitz G, Nimz M, Volter J, Lazar K, Guczi L (1988) Appl Catal 45:71–83CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohamed Triki
    • 1
  • Sandra Contreras
    • 2
  • Francisco Medina
    • 2
  1. 1.Centre National des Recherches en Sciences des Matériaux (CNRSM)Pôle Technologique de Borj-CédriaSolimanTunisia
  2. 2.Departament d’Enginyeria QuímicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations