Advertisement

Polymerization behavior and gel properties of ethane, ethylene and acetylene-bridged polysilsesquioxanes

  • Kazuki Yamamoto
  • Joji OhshitaEmail author
  • Tomonobu Mizumo
  • Toshinori Tsuru
Original Paper

Abstract

Soluble bridged polysilsesquioxanes with a range of molecular weight were synthesized from bis(triethoxysilyl)ethane, ethylene, and acetylene (BTES-E1, -E2, and -E3) via hydrolysis and polycondensation reaction by adjusting the water amount. Polymerization behavior of these three trialkoxysilanes was investigated by monitoring the reaction progress by GPC, and 29Si NMR spectrometry of the resulting polymers, poly(BTES-E1), poly(BTES-E2), and poly(BTES-E3), showing that BTES-E1 generated cyclic oligomers at the early stage. In contrast, polymerization of BTES-E2 and BTES-E3 provided no detectable amounts of cyclic oligomers, but afforded linear polymers only. Bulk gels were also prepared by curing the polymers. The gel from poly(BTES-E3) exhibited high thermal stability derived from the rigid acetylene spacer with respect to thermogravimetric analysis. On the other hand, the polymer film of BTES-E1 showed the highest pencil hardness index among the polymers, indicating the tight siloxane network of poly(BTES-E1).

Keywords

Bridged polysilsesquioxane Sol–gel process Bulk gels Polymerization behavior Cyclic oligomer 

Notes

Acknowledgments

This research was supported by Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST).

References

  1. 1.
    Shimojima A, Kuroda K (2003) Angew Chem Int Ed 42:4057–4060CrossRefGoogle Scholar
  2. 2.
    Suzuki J, Shimojima A, Fujimoto Y, Kuroda K (2008) Chem Eur J 14:973–980CrossRefGoogle Scholar
  3. 3.
    Seino M, Wang W, Lofgreen J, Puzzo D, Manabe T, Ozin G (2011) J Am Chem Soc 133:18082–18085CrossRefGoogle Scholar
  4. 4.
    Lee H, Shibata T, Kanezashi M, Mizumo T, Ohshita J (2011) J Memb Sci 383:152–158CrossRefGoogle Scholar
  5. 5.
    Shea K, Loy D, Webster O (1992) J Am Chem Soc 114:6700–6710CrossRefGoogle Scholar
  6. 6.
    Shea K, Loy D (2001) Chem Mater 13:3306–3319CrossRefGoogle Scholar
  7. 7.
    Corriu R, Moreau J, Thepot P, Man M (1992) Chem Mater 4:1217–1224CrossRefGoogle Scholar
  8. 8.
    Rac B, Hegyes P, Forgo P, Molnar A (2006) Appl Catal A 299:193–201CrossRefGoogle Scholar
  9. 9.
    Sasidharan M, Bhaumik A (2013) ACS Appl Mater Interfaces 5:2618–2625CrossRefGoogle Scholar
  10. 10.
    Burleigh M, Markowitz M, Spector M, Gaber B (2002) Environ Sci Technol 36:2515–2518CrossRefGoogle Scholar
  11. 11.
    Kruk M, Jaroniec M, Guan S, Inagaki S (2001) J Phys Chem B 105:681–689CrossRefGoogle Scholar
  12. 12.
    Kanezashi M, Yada K, Yoshioka T, Tsuru T (2009) J Am Chem Soc 131:414–415CrossRefGoogle Scholar
  13. 13.
    Kanezashi M, Miyauchi S, Nagasawa H, Yoshioka T, Tsuru T (2013) RSC Adv 3:12080–12083CrossRefGoogle Scholar
  14. 14.
    Xu R, Kanezashi M, Yoshioka T, Okuda T, Ohshita J, Tsuru T (2013) ACS Appl Mater Interfaces 5:6147–6154CrossRefGoogle Scholar
  15. 15.
    Wang W, Grozea D, Kim A, Perovic D, Ozin G (2010) Adv Mater 22:99–102CrossRefGoogle Scholar
  16. 16.
    Dubois G, Volksen W, Magbitang T, Miller R, Gage D, Dauskardt R (2007) Adv Mater 19:3989–3994CrossRefGoogle Scholar
  17. 17.
    Masse S, Laurent G, Babonneau F (2007) Non-Cryst Solids 353:1109–1119CrossRefGoogle Scholar
  18. 18.
    Saito H, Nishio Y, Kobayashi M, Sugahara Y (2011) J Sol–Gel Sci Technol 57:51–56CrossRefGoogle Scholar
  19. 19.
    Sakka S, Tanaka Y, Kokubo T (1986) J Non-Cryst Solids 82:24–30CrossRefGoogle Scholar
  20. 20.
    Gunji T, Hayashi Y, Komatsubara A, Arimitsu K, Abe Y (2012) Appl Organometal Chem 26:32–36CrossRefGoogle Scholar
  21. 21.
    Gunji T, Itagaki S, Kajiwara T, Abe Y, Hatakeyama T, Aoki R (2009) Polym J 41:541–546CrossRefGoogle Scholar
  22. 22.
    Gunji T, Yamamoto K, Tomobe A, Abe N, Abe Y (2012) Inter J Polymer Sci, Article ID 568301, 5 ppGoogle Scholar
  23. 23.
    Loy D, Carpenter J, Alam T, Shaltout R, Dorhout P, Greaves J, Small J, Shea K (1998) J Am Chem Soc 10:4129–4140Google Scholar
  24. 24.
    Loy D, Carpenter J, Yamanaka S, McClain M, Greaves J, Hobson S, Shea K (1998) Chem Mater 10:4129–4140CrossRefGoogle Scholar
  25. 25.
    Fischer C, Raith A, Mink J, Sieber G, Cokoja M, Kuhn F (2011) J Organometal Chem 696:2910–2917CrossRefGoogle Scholar
  26. 26.
    Corriu R, Moreau J, Thepot P, Man M (1996) Chem Mater 8:100–106CrossRefGoogle Scholar
  27. 27.
    Loy D, Carpenter J, Alam T, Shaltout R, Dorhout P, Greaves J, Small J, Shea K (1999) J Am Chem Soc 121:5413–5425CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kazuki Yamamoto
    • 1
  • Joji Ohshita
    • 1
    Email author
  • Tomonobu Mizumo
    • 1
  • Toshinori Tsuru
    • 2
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Chemical Engineering, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations