Advertisement

Journal of Sol-Gel Science and Technology

, Volume 69, Issue 2, pp 378–385 | Cite as

Textural, structural and catalytic properties of zirconia doped by heteropolytungstic acid: a comparative study between aerogel and xerogel catalysts

  • Samir ChakhariEmail author
  • Mohamed Kadri Younes
  • Alain Rives
  • Abdelhamid Ghorbel
Original Paper

Abstract

Zirconia doped by heteropolytungstic acid HPW have been synthesized by sol–gel method using two drying techniques of the solvent evacuation. Samples were analyzed with adsorption–desorption of N2 at 77 K, and the aerogel catalyst was found to exhibit a higher surface area and a higher average pore diameter compared to xerogel. XRD results show that aerogel develops ZrO2 tetragonal phase, whereas xerogel is amorphous. The thermal analysis studies show that the aerogel’s thermal stability is better than the xerogel one. The catalytic behavior of the aerogel and xerogel toward the nature of the isomerization products probably depends on the acidity and the presence of carbide species. This has been explained by XPS and isopropanol dehydration reaction. In fact, the deconvolution aerogel’s Cls bands reveals the presence of four carbon species assigned to C–C, C=O, C–O and carbide species.

Keywords

Zirconia Heteropolytungstic acid Carbide Aerogel Xerogel 

References

  1. 1.
    Reddy BM, Sreekanth PM, Lakshmanan P (2005) J Mol Catal A: Chem 237:93–100CrossRefGoogle Scholar
  2. 2.
    Wakayama T, Matsuhashi H (2005) J Mol Catal A: Chem 239:32–40CrossRefGoogle Scholar
  3. 3.
    Watanabe K, Oshio N, Kawakami T, Kimura T (2004) Appl Catal A Gen 272:281–287CrossRefGoogle Scholar
  4. 4.
    Younes MK, Ghorbel A, Rives A, Hubaut R (2000) J Sol-Gel Sci Technol 19:817–819CrossRefGoogle Scholar
  5. 5.
    Pizzio LR, Caceres CV, Blanco MN (1998) J Appl Catal A Gen 167:283–294CrossRefGoogle Scholar
  6. 6.
    Pizzio LR, Vazquez PG, Cáceres CV, Blanco MN (2003) J Appl Catal A Gen 256:125–139CrossRefGoogle Scholar
  7. 7.
    Manriquez ME, Lopez T, Gomez R, Navarrete J (2004) J Mol Catal A: Chem 220:229–237CrossRefGoogle Scholar
  8. 8.
    Zhang JH, Zhou XL, Wang JA (2006) J Mol Catal A: Chem 247:222–226CrossRefGoogle Scholar
  9. 9.
    Perissinotto M, Lenarda M, Storaro L, Ganzerla R (1997) J Mol Catal A: Chem 121:103–109CrossRefGoogle Scholar
  10. 10.
    Parvulescu V, Comman S, Parvulescu VI, Range P, Poncelet GJ (1998) J Catal 180:66–84CrossRefGoogle Scholar
  11. 11.
    Bokade VV, Yadav GD (2007) IChemE 85(B5):372–377Google Scholar
  12. 12.
    Yori JC, Pieck CL, Parera JM (1998) Catal Lett 2:227–229CrossRefGoogle Scholar
  13. 13.
    Kozhevnikov IV, Kloetstra KR, Sinnema A, Zandbergen HW, Van Bekkum H (1996) J Mol Catal A: Chem 114:287–298CrossRefGoogle Scholar
  14. 14.
    Kozhevnikov IV (1998) Chem Rev 98:171–198CrossRefGoogle Scholar
  15. 15.
    Kozhevnikov IV (1987) Russ Chem Rev 56:811–825CrossRefGoogle Scholar
  16. 16.
    Younes MK, Ghorbel A, Rives A, Hubaut R (2000) Stud Surf Sci Catal 130:3219–3224CrossRefGoogle Scholar
  17. 17.
    Mejri I, Younes MK, Ghorbel A (2006) J Sol-Gel Sci Techn 40:3–8CrossRefGoogle Scholar
  18. 18.
    Kamoun N, Younes MK, Ghorbel A, Mamede AS, Rives A (2012) J Porous Mater 19:375–381CrossRefGoogle Scholar
  19. 19.
    Davis BH, Keogh RA, Srinivasan R (1994) Catal Today 20:219–256CrossRefGoogle Scholar
  20. 20.
    Garcia E, Volpe MA, Ferreira ML, Rueda E (2003) J Mol Catal A: Chem 201:263–281CrossRefGoogle Scholar
  21. 21.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  22. 22.
    Babou F, Coudurier G, Vedrine JC (1995) J Catal 152:341–349CrossRefGoogle Scholar
  23. 23.
    Zeng HC, Shi S (1995) J Non-Cryst Sol 185:31–40CrossRefGoogle Scholar
  24. 24.
    Ivanov AV, Vasina TV, Nissenbaum VD, Kustov LM, Timofeeva MN, Houzvicka JI (2004) J Appl Catal A Gen 259:65–72CrossRefGoogle Scholar
  25. 25.
    Rodriguez-Castellon E, Jimenez-Lopez A, Maireles-Torres P, Jones DJ, Rozière J, Trombetta M, Busc G, Lenarda M, Storaro L (2003) J Solid State Chem 175:159–169CrossRefGoogle Scholar
  26. 26.
    Guo Y, Hu C (2007) J Mol Catal A: Chem 262:136–148CrossRefGoogle Scholar
  27. 27.
    Pizzio LR, Caceres CV, Blanco MN (1998) Appl Catal A 167:283–294CrossRefGoogle Scholar
  28. 28.
    Ranklin J, Mendez LA, Echeverria M, Jauregui R, Villasana Y, Diaz Y, Liendo-Polanco G, Ramos-Garcaa MA, Zoltan T, Joaquin LB (2013) Fuel 110:249–258CrossRefGoogle Scholar
  29. 29.
    Avila DM, Muccillo ENS (1995) Thermochim Acta 256:391–398CrossRefGoogle Scholar
  30. 30.
    Picquart M, Lopez T, Gomez R, Torres E, Moreno A, Garcia J (2004) J Therm Anal Calorim 76:755–761CrossRefGoogle Scholar
  31. 31.
    Rivera De la Rosa J, Hermandez A, Rojas F, Ledezma JJ (2008) Colloids Surf A Physicochem Eng Asp 315:147–155CrossRefGoogle Scholar
  32. 32.
    Okuhara T, Mizuno N, Misono M (1996) Adv Catal 41:113–252CrossRefGoogle Scholar
  33. 33.
    Moffat JB, Kaszelan S (1988) J Catal 109:206–211CrossRefGoogle Scholar
  34. 34.
    Baoshan L, Zhenxing L, Chunying H, Wei M, Songjie Z (2012) J Colloid Interface Sci 377:334–341CrossRefGoogle Scholar
  35. 35.
    Morant C, Sanz JM, Galan L, Soriano L, Rueda F (1989) Surf Sci 218:331–345CrossRefGoogle Scholar
  36. 36.
    Resofszki G, Muhler M, Sprenger S, Wild U, Paál Z (2003) J Appl Catal A Gen 240:71–81CrossRefGoogle Scholar
  37. 37.
    Litas IM, Vinatier P, Levasseur A, Dupin JC, Gonbeau D, Weill F (2002) Thin Solid Films 416:1–9CrossRefGoogle Scholar
  38. 38.
    Katrib A, Hemming F, Wehrer P, Hilaire L, Maire G (1994) J Electron Spectros Relat Phenomena 68:589–595CrossRefGoogle Scholar
  39. 39.
    Wachs IE, Chersich CC, Hardenbergh JH (1985) Appl Catal 13:335–346CrossRefGoogle Scholar
  40. 40.
    Cortés-Jacomea MA, Angeles-Chaveza C, Bokhimib X, Toledo-Antonio JA (2006) J Solid State Chem 179:2663–2673CrossRefGoogle Scholar
  41. 41.
    Gu G, Olson CG, Lynch DW (1993) Rev B 48:12178–12182CrossRefGoogle Scholar
  42. 42.
    Estrade-Szwarckopf H (2004) Carbon 42:1713–1721CrossRefGoogle Scholar
  43. 43.
    Schmeisser D, Batchelor DR, Mikalo RP, Hoffmann P, Lloyd-Spetz A (2001) Appl Surf Sci 184:340–345CrossRefGoogle Scholar
  44. 44.
    Martin L, Martinez H, Ulldemolins M, Pecquenard B, Le Cras F (2012) Solid State Ionics 215:36–44CrossRefGoogle Scholar
  45. 45.
    Todi RM, Sundaram KB, Warren AP, Scammon K (2006) Solid State Electron 50:1189–1193CrossRefGoogle Scholar
  46. 46.
    Elsbergen VV, Kampen TU, Mönch W (1996) Surf Sci 365:443–452CrossRefGoogle Scholar
  47. 47.
    Badziag P (1995) Surf Sci 337:1–7CrossRefGoogle Scholar
  48. 48.
    Lee KE, Lee JY, Park MJ, Kim JH, Lee CB, Kim CO (2004) J Magn Magn Mater 272–276:2197–2199CrossRefGoogle Scholar
  49. 49.
    Cocke DL, Owens MS (1989) J Colloid Interface Sci 131:166–180CrossRefGoogle Scholar
  50. 50.
    Mejri I, Younes MK, Ghorbel A, Eloy P, Gaigneaux EM (2006) Stud Surf Sci Catal 162:953–960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Samir Chakhari
    • 1
    Email author
  • Mohamed Kadri Younes
    • 1
  • Alain Rives
    • 2
  • Abdelhamid Ghorbel
    • 1
  1. 1.Laboratoire de Chimie des Matériaux et Catalyse, Département de Chimie, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  2. 2.Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181Université des Sciences et Technologies de Lille, Bâtiment C3Villeneuve d’AscqFrance

Personalised recommendations