Journal of Sol-Gel Science and Technology

, Volume 69, Issue 2, pp 351–356

High temperature stability and photocatalytic activity of nanocrystalline anatase powders with Zr and Si co-dopants

  • Nasrollah Najibi Ilkhechi
  • Behzad Koozegar Kaleji
Original Paper

Abstract

TiO2 nanopowders doped by Si and Zr were prepared by sol–gel method. The effects of Si and Zr doping on the structural, optical, and photo-catalytic properties of titania nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and UV–Vis absorption spectroscopy. XRD results suggest that adding impurities has a significant effect on anatase phase stability, crystallinity, and particle size of TiO2. Titania rutile phase formation in ternary system (Ti–Si–Zr) was inhibited by Zr4+ and Si4+ co-doped TiO2 in high temperatures (500–900 °C) and 36 mol% anatase composition is retained even after calcination at 1,000 °C. The photocatalyst activity was evaluated by photocatalytic degradation kinetics of aqueous methylen orange under visible radiation. The results show that the photocatalytic activity of the 20 %Si and 15 %Zr co-doped TiO2 nanopowders have a larger degradation efficiency than pure TiO2 under visible light.

Keywords

Titania nanopowders Sol–gel Photo-catalytic activity Si/Zr dopant 

References

  1. 1.
    Gopal M, Chan W, Jonghe L (1997) J Mater Sci 32:6001–6008CrossRefGoogle Scholar
  2. 2.
    Mark HF, Othmer DF, Overberger CG, Seaberg GT (eds) (1983) Encyclopedia of chemical technology, vol 23. John Wiley, New YorkGoogle Scholar
  3. 3.
    Weast RC (1984) Handbook of chemistry and physics. CRC Press, Boca Raton, FL, pp B–154Google Scholar
  4. 4.
    Kostov I (1973) Minerology, 3rd edn. Nauka, Izkustia, SofiaGoogle Scholar
  5. 5.
    Yang SW, Gao L (2005) J Am Ceram Soc 88:968–970CrossRefGoogle Scholar
  6. 6.
    Karakitsou KE, Verykios XE (1993) J Phys Chem B 97:1184–1189CrossRefGoogle Scholar
  7. 7.
    Hu C, Lan Y, Hu X, Wang A (2006) J Phys Chem B 110:4066–4072CrossRefGoogle Scholar
  8. 8.
    Sakatani Y, Grosso D, Nicole L, Boissiere C, Illia S, Sanchez C (2007) J Mater Chem 16:77–82CrossRefGoogle Scholar
  9. 9.
    Fujishima A, Rao TN, Tryk DA (2001) J Photochem Photobiol C: Photochem Rev 1:1–21Google Scholar
  10. 10.
    Parkin IP, Palgrave RG (2005) J Mater Chem 15:1689–1695CrossRefGoogle Scholar
  11. 11.
    Mills A, Lee SK (2006) J Photochem Photobiol A Chem 182:181–186CrossRefGoogle Scholar
  12. 12.
    Zanderna AW, Rao CNR, Honig JM (1958) Trans Faraday Soc 54:1069–1073CrossRefGoogle Scholar
  13. 13.
    Yoganarasimhan SR, Rao CNR (1962) Trans Faraday Soc 58:1579–1582CrossRefGoogle Scholar
  14. 14.
    Kumar SR, Pillai SC, Hareesh US, Mukundan P, Warrier KGK (2000) Mater Lett 43:286–290CrossRefGoogle Scholar
  15. 15.
    Reidy DJ, Holmes JD, Morris MA (2006) J Eur Ceram Soc 26:1527–1534CrossRefGoogle Scholar
  16. 16.
    Yin S, Ihara K, Aita Y, Komatsu M, Sato T (2006) J Photochem Photobiol A Chem 179:105–114CrossRefGoogle Scholar
  17. 17.
    Yin S, Yamaki H, Komatsu M, Zhang Q, Wang J, Tang Q (2003) J Mater Chem 13:2996–3001CrossRefGoogle Scholar
  18. 18.
    Colon G, Hidalgo MC, Munuera G, Ferino I, Cutrufello MG, Navio JA (2006) Appl Catal B Environ 63:45–59CrossRefGoogle Scholar
  19. 19.
    Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2005) Appl Catal A General 285:181–189CrossRefGoogle Scholar
  20. 20.
    Kubacka A, Fuerte A, Martinez-Arias A, Fernandez-Garcia M (2007) Appl Catal B Environ 74:26–33CrossRefGoogle Scholar
  21. 21.
    Jin Z, Zhang X, Li Y, Li S, Lu G (2007) Catal Commun 8:1267–1273CrossRefGoogle Scholar
  22. 22.
    Sayilkan HI (2007) Appl Catal A General 319:230–236CrossRefGoogle Scholar
  23. 23.
    Xie Y, Yuan C (2004) Appl Surf Sci 221:17–24CrossRefGoogle Scholar
  24. 24.
    Bouras P, Slathatos E, Lianos P (2007) Appl Catal B Environ 73:51–59CrossRefGoogle Scholar
  25. 25.
    Kudo A (2007) Int J Hydrogen Energy 32:2673–2678CrossRefGoogle Scholar
  26. 26.
    Cuiying H, Wansheng Y, Ligin D, Zhibin L, Zhengang S, Lancui Z (2006) Chin J Catal 27:203–209CrossRefGoogle Scholar
  27. 27.
    Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) J Mater Sci 36:4201–4207CrossRefGoogle Scholar
  28. 28.
    Ihara T, Miyoshi M, Iriyana Y, Matsumoto O, Sugihara S (2003) Appl Catal B Environ 42:403–409CrossRefGoogle Scholar
  29. 29.
    Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15:161–167CrossRefGoogle Scholar
  30. 30.
    Koozegar Kaleji B, Sarraf-Mamoory R, Nakata K, Fujishima A (2011) J Sol–Gel Sci Technol 60:99–107CrossRefGoogle Scholar
  31. 31.
    Koozegar Kaleji B, Sarraf-Mamoory R, Fujishima A (2012) Mater Chem Phys 132:210–215CrossRefGoogle Scholar
  32. 32.
    Klug P, Alexander LE (1974) X-ray diffraction procedures. Wiley, New YorkGoogle Scholar
  33. 33.
    Spurr RA, Myers H (1957) Anal Chem 29:760–762CrossRefGoogle Scholar
  34. 34.
    Baker RW (2004) Membrane technology and application. Wiley, ChichesterCrossRefGoogle Scholar
  35. 35.
    Dorian AH, Hanaor, Charles C, Sorrell (2011) J Mater Sci 46:855–874CrossRefGoogle Scholar
  36. 36.
    Kapusuz D, Park J, Ozturk A (2013) J Phys Chem Solids 74:1026–1031CrossRefGoogle Scholar
  37. 37.
    Mountjoy G, Holland MA, Wallidge GW, Gunawidjaja G, Smith M, Pickup DM, Newport (2009) J Hazard Mater 162:1309–1316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nasrollah Najibi Ilkhechi
    • 1
  • Behzad Koozegar Kaleji
    • 1
  1. 1.Department of Materials Engineering, Faculty of EngineeringMalayer UniversityMalayerIran

Personalised recommendations