Journal of Sol-Gel Science and Technology

, Volume 69, Issue 2, pp 338–344

Interaction of magnetic cobalt based titanium dioxide nanofibers with muscle cells: in vitro cytotoxicity evaluation

  • Touseef Amna
  • M. Shamshi Hassan
  • Myung-Seob Khil
  • I. H. Hwang
Original Paper

Abstract

Titanium dioxide and magnetic cobalt based materials are one of the most attractive materials for investigation due to their dramatic photocatalytic, optical, biomedical, magnetic and electrical applications. However, there is limited or no information about the possible impact of cobalt based titanium dioxide (Co-doped TiO2) nanofibers on muscle cells. This study focuses on the interaction of magnetic cobalt based titanium dioxide nanofibers with C2C12 cell line. C2C12 mouse myoblasts were used to evaluate the beneficial/or toxicological effects of Co-doped TiO2 on cells. The effects of Co-doped TiO2 nanofibers on the morphology, cytotoxicity and adhesion ability of C2C12 cells, as well as on the cell death were evaluated. To examine the in vitro cytotoxicity, mouse myoblast C2C12 cells were treated with different concentrations of synthesized Co-doped TiO2 nanofibers and the viability of cells was analyzed by cell counting Kit-8 assay at regular time intervals. The morphological features of the cells were examined by microscopy and cell attachment with nanofibers was observed by scanning electron microscopy respectively. Experiments indicate that the mouse myoblast cells could attach to the nanofibers after being cultured. Cell viability was determined as a function of incubation time; with increasing concentration of Co-doped TiO2, the cell viability decreased. Thus from the obtained results it was concluded that Co-doped TiO2 nanofibers could support cell adhesion and growth of myoblast cells, however the cell compatibility decreases with high doses and after sustained exposure.

Keywords

Electrospinning C2C12 Co-doped TiO2 Scaffolds Tissue engineering 

References

  1. 1.
    Mieszawska AJ, Kaplan DL (2010) BMC Biol 8:59CrossRefGoogle Scholar
  2. 2.
    Ma PX (2008) Adv Drug Deliv Rev 60:184CrossRefGoogle Scholar
  3. 3.
    Shin H, Jo S, Mikos AG (2003) Biomaterials 24:4353CrossRefGoogle Scholar
  4. 4.
    Lan MA, Gersbach CA, Michael KE, Keselowsky BG, Garcia AJ (2005) Biomaterials 26:4523CrossRefGoogle Scholar
  5. 5.
    Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) Biomaterials 29:2899CrossRefGoogle Scholar
  6. 6.
    Baker SC, Southgate J (2008) Biomaterials 29:3357CrossRefGoogle Scholar
  7. 7.
    Lutolf MP, Hubbell JA (2005) Nat Biotechnol 23:47CrossRefGoogle Scholar
  8. 8.
    Huber A, Pickett A, Shakesheff KM (2007) Eur Cell Mater 14:56Google Scholar
  9. 9.
    Dugan JM, Gough JE, Eichhorn SJ (2010) Biomacromolecules 11:2498CrossRefGoogle Scholar
  10. 10.
    Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, Chu B, Lee RJ, Li S (2006) Nano Lett 6:537CrossRefGoogle Scholar
  11. 11.
    Niinomi M, Nakai M (2011) Int J Biomater 2011:836587CrossRefGoogle Scholar
  12. 12.
    Jokinen M, Pa¨tsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) J Biomed Mater Res 42:295CrossRefGoogle Scholar
  13. 13.
    Nygren H, Eriksson C, Lausmaa J (1997) J Lab Clin Med 129:35CrossRefGoogle Scholar
  14. 14.
    Nygren H, Tengvall P, Lundstrom I (1997) J Biomed Mater Res 34:487CrossRefGoogle Scholar
  15. 15.
    Wintermantel E, Mayer J, Ruffieux K, Bruinink A, Eckert KL (1999) Chirurg 70:847CrossRefGoogle Scholar
  16. 16.
    Wintermantel E, Cima L, Schloo B, Langer R (1992) Angiopolarity of cell carriers, directional angiogenesis in resorbable liver cell transplantation devices. In: Steiner R, Weisz B, Langer R (eds) Angiogenesis: principles science-technology-medicine. Birkhaeuser Verlag, BaselGoogle Scholar
  17. 17.
    Liu X, Chu PK, Ding C (2004) Mater Sci Eng R 47:49CrossRefGoogle Scholar
  18. 18.
    Wang RM, Liu CM, Zhang HZ, Chen CP, Guo L, Xu HB, Yang SH (2004) Appl Phys Lett 85:2080CrossRefGoogle Scholar
  19. 19.
    Li T, Yang SG, Huang LS, Gu BX, Du YW (2004) Nanotechnology 15:1479CrossRefGoogle Scholar
  20. 20.
    Yoon YI, Moon HS, Lyoo WS, Lee TS, Park WH (2009) Carbohydr Polym 5:246CrossRefGoogle Scholar
  21. 21.
    Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Toxicol Lett 188:112CrossRefGoogle Scholar
  22. 22.
    Eun HK, Yoon YJ, Park JH, Yang SH, Hong D, Lee KB, Shon HK, Lee TG, Choi IS (2013) Angew Chem Int Ed 52:1CrossRefGoogle Scholar
  23. 23.
    Groenke N, Seisenbaeva GA, Kaminskyy V, Zhivotovsky B, Kost B, Kessler VG (2012) R Soc Chem RSC Adv 2:4228CrossRefGoogle Scholar
  24. 24.
    Lee IH, Yu HS, Lakhkar NJ, Kim HW, Gong MS, Knowles JC, Wall IB (2013) Mater Sci Eng C 33:2104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Touseef Amna
    • 1
  • M. Shamshi Hassan
    • 2
  • Myung-Seob Khil
    • 2
  • I. H. Hwang
    • 1
  1. 1.Department of Animal Science and BiotechnologyChonbuk National UniversityChonjuSouth Korea
  2. 2.Department of Organic Materials and Fiber EngineeringChonbuk National UniversityChonjuSouth Korea

Personalised recommendations