Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 286–291 | Cite as

Ordered nanostructured ceramic–metal composites through multifunctional block copolymer-metal nanoparticle self-assembly

  • Zihui Li
  • Hiroaki Sai
  • Kwan Wee Tan
  • Tobias N. Hoheisel
  • Sol M. Gruner
  • Ulrich Wiesner
Original Paper

Abstract

A novel strategy for fabrication of ordered ceramic–metal nanocomposites was demonstrated by multifunctional block copolymer/metal nanoparticle self-assembly. Hybrid organic–inorganic block copolymer poly(3-methacryloxypropyl-T8-heptaisobutyl-polyhedral oligomeric silsesquioxane-block-N,N-dimethylaminoethyl methacrylate) was synthesized and used as a bi-functional structure directing agent for ligand-stabilized platinum nanoparticles to form ordered organic–inorganic nanocomposites with dense loading of inorganic species in both microphase separated domains. Subsequently, thin films of the hybrid material were converted to ordered silica (ceramic)–platinum (metal) nanocomposites via UV-assisted ozonolysis. This is the first time ordered ceramic–metal nanocomposites were achieved through a bottom-up approach, opening up opportunities for the design and synthesis of a broad range of ordered inorganic–inorganic nanocomposites.

Keywords

Ordered ceramic–metal nanocomposites Block copolymer Metal nanoparticles Organic–inorganic materials Bottom-up approach 

Supplementary material

10971_2013_3169_MOESM1_ESM.tif (20.9 mb)
Supplementary material 1 (TIFF 21387 kb)
10971_2013_3169_MOESM2_ESM.tif (14.7 mb)
Supplementary material 2 (TIFF 15070 kb)

References

  1. 1.
    Taya M, Arsenault RJ (1989) Metal matrix composites. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Niihara K (1991) J Ceram Soc Jpn 99:974–982CrossRefGoogle Scholar
  3. 3.
    Moya JS, Lopez-Esteban S, Pecharromán C (2007) Prog Mater Sci 52:1017–1090CrossRefGoogle Scholar
  4. 4.
    Rodriguez-Suarez T, Bartolomé JF, Moya JS (2012) J Eur Ceram Soc 32:3887–3898CrossRefGoogle Scholar
  5. 5.
    Warren SC, Perkins MR, Adams AM, Kamperman M, Burns AA, Arora H, Herz E, Suteewong T, Sai H, Li Z, Werner J, Song J, Werner-Zwanziger U, Zwanziger JW, Grätzel M, DiSalvo FJ, Wiesner U (2012) Nat Mater 11:460–467CrossRefGoogle Scholar
  6. 6.
    Fogg DE, Radzilowski LH, Blanski R, Schrock RR, Thomas EL (1997) Macromolecules 30:417–426CrossRefGoogle Scholar
  7. 7.
    Templin M, Franck DA, Leist H, Zhang YM, Ulrich R, Schädler V, Wiesner U (1997) Science 278:1795–1798CrossRefGoogle Scholar
  8. 8.
    Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Nature 396:152–155CrossRefGoogle Scholar
  9. 9.
    Kamperman M, Garcia CBW, Du P, Wiesner U (2004) J Am Chem Soc 126:14708–14709CrossRefGoogle Scholar
  10. 10.
    Warren SC, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U (2008) Science 320:1748–1752CrossRefGoogle Scholar
  11. 11.
    Li Z, Sai H, Warren SC, Kamperman M, Arora H, Gruner SM, Wiesner U (2009) Chem Mater 21:5584Google Scholar
  12. 12.
    Arora H, Li Z, Sai H, Kamperman M, Warren SC, Wiesner U (2010) Macromol Rapid Commun 31:1960–1964CrossRefGoogle Scholar
  13. 13.
    Zhao Y, Thorkelsson K, Mastroianni AJ, Schilling T, Luther JM, Rancatore BJ, Matsunaga K, Jinnai H, Wu Y, Poulsen D, Fréchet JMJ, Alivisatos AP, Xu T (2009) Nat Mater 8:979–985CrossRefGoogle Scholar
  14. 14.
    Lin Y, Daga VK, Anderson ER, Gido SP, Watkins JJ (2011) J Am Chem Soc 133:6513–6516CrossRefGoogle Scholar
  15. 15.
    Buonsanti R, Pick TE, Krins N, Richardson TJ, Helms BA, Milliron DJ (2012) Nano Lett 12:3872–3877CrossRefGoogle Scholar
  16. 16.
    Kowalewski T, Tsarevsky NV, Matyjaszewski K (2002) J Am Chem Soc 124:10632–10633CrossRefGoogle Scholar
  17. 17.
    Stefik M, Sai H, Sauer K, Gruner SM, DiSalvo FJ, Wiesner U (2009) Macromolecules 42:6682–6687CrossRefGoogle Scholar
  18. 18.
    Lechmann MC, Kessler D, Gutmann JS (2009) Langmuir 25:10202–10208CrossRefGoogle Scholar
  19. 19.
    Malenfant PR, Wan J, Tayler ST, Manohran M (2007) Nat Nanotech 2:43–46CrossRefGoogle Scholar
  20. 20.
    Nghiem QD, Kim D-P (2008) Chem Mater 20:3735–3739Google Scholar
  21. 21.
    Chan VZH, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL (1999) Science 286:1716–1719CrossRefGoogle Scholar
  22. 22.
    Massey JA, Winnik MA, Chan VZH, Ostermann JM, Enchelmaier R, Spatz JP, Möller M (2001) J Am Chem Soc 123:3147–3148CrossRefGoogle Scholar
  23. 23.
    Ross CA, Jung YS, Chuang VP, Ilievski F, Yang JKW, Bita I, Thomas EL, Smith HI, Berggren KK, Vancso GJ, Cheng YJ (2008) J Vac Sci Technol, B 26:2489–2494CrossRefGoogle Scholar
  24. 24.
    Cordes DB, Lickiss PD, Rataboul F (2010) Chem Rev 110:2081–2173CrossRefGoogle Scholar
  25. 25.
    Amir N, Levina A, Silverstein MS (2007) J Polym Sci Part A 45:4264–4275CrossRefGoogle Scholar
  26. 26.
    Wu J, Haddad TS, Mather PT (2009) Macromolecules 42:1142–1152CrossRefGoogle Scholar
  27. 27.
    Hirai T, Leolukman M, Hayakawa T, Kakimoto M, Gopalan P (2008) Macromolecules 41:4558–4560CrossRefGoogle Scholar
  28. 28.
    Hirai T, Leolukman M, Liu CC, Han E, Kim YJ, Ishida Y, Hayakawa T, Kakimoto M, Nealey PF, Gopalan P (2009) Adv Mater 21:1–5Google Scholar
  29. 29.
    Pyun J, Matyjaszewski K, Wu J, Kim GM, Chun SB, Mather PT (2003) Polymer 44:2739–2750CrossRefGoogle Scholar
  30. 30.
    Mather PT, Hong GJ, Romo-Uribe J, Haddad TS, Lichtenhan JD (1999) Macromolecules 32:1194–1203CrossRefGoogle Scholar
  31. 31.
    Finnefrock AC, Ulrich R, Toombes GES, Gruner SM, Wiesner U (2003) J Am Chem Soc 125:13084–13093CrossRefGoogle Scholar
  32. 32.
    Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G (2006) Thermochim Acta 440:36–42CrossRefGoogle Scholar
  33. 33.
    Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW (1996) Chem Mater 8:1250–1259Google Scholar
  34. 34.
    Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Chem Mater 12:1591–1596Google Scholar
  35. 35.
    Hartmann-Thompson C (2011) Applications of polyhedral oligomeric silsesquioxanes. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Chomel AD, Dempsey P, Latournerie J, Hourlier-Bahloul D, Jayasooriya UA (2005) Chem Mater 17:4468–4473Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Zihui Li
    • 1
  • Hiroaki Sai
    • 2
  • Kwan Wee Tan
    • 2
  • Tobias N. Hoheisel
    • 2
  • Sol M. Gruner
    • 3
    • 4
    • 5
  • Ulrich Wiesner
    • 2
  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA
  2. 2.Department of Materials Science and EngineeringCornell UniversityIthacaUSA
  3. 3.Department of PhysicsCornell UniversityIthacaUSA
  4. 4.Cornell High Energy Synchrotron Source (CHESS)Cornell UniversityIthacaUSA
  5. 5.Kavli Institute at Cornell for Nanoscale ScienceCornell UniversityIthacaUSA

Personalised recommendations