Journal of Sol-Gel Science and Technology

, Volume 68, Issue 2, pp 284–293 | Cite as

Fabrication of hollow SiO2 and Au (core)–SiO2 (shell) nanostructures of different shapes by CdS template dissolution

Original Paper


Core–shell silica (SiO2) coated CdS nanorods (NR) and nanospheres (NS) were prepared (SiO2@CdS) by deposition of a Si–O–Si amorphous layer over the CdS surface through the hydrolysis of 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Nanoporous SiO2 matrix (NPSM), hollow SiO2 nanotubes (HSNT) and nanospheres (HSNS) useful for efficient adsorption and catalytic processes were prepared by chemical dissolution of CdS–NS (size: 9–10 nm) and CdS–NR (length: 116–128 nm and width: 6–11 nm) template from SiO2@CdS with 2 M HNO3. These SiO2 nanostructures were characterized by optical absorption, TEM, EDX, SAED and BET surface area analysis. TEM images revealed the fabrication of slightly distorted HSNS (size: 9–12 nm) and closed HSNT (length: 30–45 nm and diameter: 9–14 nm) of shorter dimensions than the CdS–NR template used. The BET surface area (112–134 m2 g−1) of NPSM and HSNS is found to be larger than the surface area (29–51 m2 g−1) of SiO2@CdS composites indicating hollow SiO2 morphology. Silica coated Au (SiO2@Au) composites formed by CdS dissolution from Au (2 wt%) deposited CdS–NR core-encapsulated into SiO2 shell (SiO2@Au–CdS–NR) exhibited a surface plasmon band at 550 nm and displayed high catalytic activity for 4-nitrophenol reduction by Au nanoparticle.


Hollow SiO2 nanostructures CdS (core)–SiO2 (shell) morphology High surface area CdS template SiO2 coated Au nanocomposites 


  1. 1.
    Liu S, Rao J, Sui X, Cool P, Vansant EF, Tendeloo GV, Cheng X (2008) J Non Cryst Solids 354:826–830CrossRefGoogle Scholar
  2. 2.
    Miyao T, Minoshima K, Naito S (2005) J Mater Chem 15:2268–2270CrossRefGoogle Scholar
  3. 3.
    Hah HJ, Um JI, Han SH, Koo SM (2004) Chem Commun (8):1012–1013Google Scholar
  4. 4.
    Chen JF, Ding HM, Wang JX, Shao L (2004) Biomaterials 25:723–727CrossRefGoogle Scholar
  5. 5.
    Bae E, Chah S, Yi J (2000) J Colloid Interface Sci 30:367–376CrossRefGoogle Scholar
  6. 6.
    Taniguchi T, Obi S, Kamata Y, Kashiwakura T, Kasuya M, Ogawa T, Kohri M, Nakahira T (2012) J Colloid Interface Sci 368:107–114CrossRefGoogle Scholar
  7. 7.
    Teng F, Tian Z, Xiong G, Xu Z (2004) Catal Today 93–95:651–657CrossRefGoogle Scholar
  8. 8.
    Chah S, Fendler JH, Yi J (2002) J Colloid Interface Sci 250:142–148CrossRefGoogle Scholar
  9. 9.
    Hui YZ, Bin CH, Zhong J, Wei ZW, Yan L (2010) Chin Sci Bull 55:921–926CrossRefGoogle Scholar
  10. 10.
    Mitchell DT, Lee SB, Trofin L, Li N, Nevaanen TK, Soderlund H, Martin CR (2002) J Am Chem Soc 124:11864–11865CrossRefGoogle Scholar
  11. 11.
    Yoon JH, Chae WS, Cho HM, Choi MG, Kim YR (2006) Mater Res Bull 41:1657–1663CrossRefGoogle Scholar
  12. 12.
    Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Langmuir 25:13840–13851CrossRefGoogle Scholar
  13. 13.
    Tao AR, Habas S, Yang P (2008) Small 4:310–325CrossRefGoogle Scholar
  14. 14.
    Wu SH, Tseng CT, Lin YS, Lin CH, Hung Y, Mou CY (2011) J Mater Chem 21:789–794CrossRefGoogle Scholar
  15. 15.
    Park JC, Song H (2011) Nano Res 4:33–49CrossRefGoogle Scholar
  16. 16.
    Pal B, Torimoto T, Ikeda S, Shibayama T, Sugawara K, Takahashi H, Ohtani B (2005) Top Catal 35:321–325CrossRefGoogle Scholar
  17. 17.
    Pal B, Torimoto T, Iwasaki K, Shibayama T, Takahashi H, Ohtani B (2005) J Appl Electrochem 35:751–756CrossRefGoogle Scholar
  18. 18.
    Wei C, Zhou W, Du Y, Xu J, Yang P (2010) Colloid J 72:158–162CrossRefGoogle Scholar
  19. 19.
    Pal B, Torimoto, T, Okazaki, K, Ohtani, B (2007) Chem Commun (5):483–485Google Scholar
  20. 20.
    Torimoto T, Reyes JP, Iwasaki K, Pal B, Shibayama T, Sugawara K, Takahashi H, Ohtani B (2003) J Am Chem Soc 125:316–317CrossRefGoogle Scholar
  21. 21.
    Lin YS, Wu SH, Tseng CT, Hung Y, Chang C, Mou CY (2009) Chem Commun (24):3542–3544Google Scholar
  22. 22.
    Gupta N, Pal B (2012) J Colloid Interface Sci 368:250–256CrossRefGoogle Scholar
  23. 23.
    Torimoto T, Hashitani M, Konishi T, Okazaki K, Shibayama T, Ohtani B (2009) J Nanosci Nanotechnol 9:506–513CrossRefGoogle Scholar
  24. 24.
    Yang H (2006) Met Mater Inter 12:351–355CrossRefGoogle Scholar
  25. 25.
    Chang SY, Liu L, Asher SA (1994) J Am Chem Soc 116:6739–6744CrossRefGoogle Scholar
  26. 26.
    Henglein A (1982) J Phys Chem 86:2291–2293CrossRefGoogle Scholar
  27. 27.
    Dijken AV, Janssen AH, Smitsmans HP, Vanmaekelbergh D, Meijerink A (1998) Chem Mater 10:3513–3522CrossRefGoogle Scholar
  28. 28.
    Arellano MA, Ung T, Blanco A, Mulvaney P, Marzán LML (2000) Pure Appl Chem 72:257–267CrossRefGoogle Scholar
  29. 29.
    Chen X, Berger A, Ge M, Hopfe S, Dai N, Gosele U, Schlecht S, Steinhart M (2011) Chem Mater 23:3129–3131CrossRefGoogle Scholar
  30. 30.
    Bergbreiter DE (1999) Angew Chem Int Ed 38:2870–2872CrossRefGoogle Scholar
  31. 31.
    Liu MP, Li CH, Du HB, You XZ (2012) Chem Commun 48:4950–4952CrossRefGoogle Scholar
  32. 32.
    Saunders AE, Popov I, Banin U (2006) J Phys Chem B 110:25421–25429CrossRefGoogle Scholar
  33. 33.
    Khon E, Mereshchenko A, Tarnovsky AN, Acharya K, Klinkova A, Hewa-Kasakarage NN, Nemitz I, Zamkov M (2011) Nano Lett 11:1792–1799CrossRefGoogle Scholar
  34. 34.
    Kaur R, Pal B (2012) J Mol Catal A Chem 355:39–43CrossRefGoogle Scholar
  35. 35.
    Kobayashi Y, Duarte MAC, Marza′n LML (2001) Langmuir 17:6375–6379CrossRefGoogle Scholar
  36. 36.
    Cong H, Toftegaard R, Arnbjerg J, Ogilby PR (2010) Langmuir 26:4188–4195CrossRefGoogle Scholar
  37. 37.
    Pradhan N, Pal A, Pal T (2001) Langmuir 17:1800–1802CrossRefGoogle Scholar
  38. 38.
    Zhang Z, Shao C, Zou P, Zhang P, Zhang M, Mu J, Guo Z, Li X, Wang C, Liu Y (2011) Chem Commun 47:3906–3908CrossRefGoogle Scholar
  39. 39.
    Chang G, Luo Y, Lu W, Qin X, Asiri AM, Al-Youbi AO, Sun X (2012) Catal Sci Technol 2:800–806CrossRefGoogle Scholar
  40. 40.
    Chen J, Dai RJ, Tong B, Xiao SY, Meng WW (2007) Chin Chem Lett 18:10–12CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.School of Chemistry and BiochemistryThapar UniversityPatialaIndia

Personalised recommendations