Journal of Sol-Gel Science and Technology

, Volume 70, Issue 2, pp 245–253 | Cite as

Click approaches in sol–gel chemistry

  • Xavier Cattoën
  • Achraf Noureddine
  • Jonas Croissant
  • Nirmalya Moitra
  • Kristýna Bürglová
  • Jana Hodačová
  • Olivia de los Cobos
  • Martine Lejeune
  • Fabrice Rossignol
  • Delphine Toulemon
  • Sylvie Bégin-Colin
  • Benoît P. Pichon
  • Laurence Raehm
  • Jean-Olivier Durand
  • Michel Wong Chi Man
Original Paper


The combination of the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction with sol–gel processing enables the versatile preparation of sol–gel materials under different shapes with targeted functionalities through a diversity-oriented approach. In this account, the development of the CuAAC reaction under anhydrous conditions for the synthesis of sol–gel precursors and for the assembling of magnetic nanoparticles on self-assembled monolayers is related, as well as the use of the classical CuAAC methodologies for the functionalization of mesoporous silica nanoparticles and microdots arrays. Coupling CuAAC and Sol–Gel will result in simplified preparations of multifunctional materials with controlled morphologies.


Sol–gel Click chemistry CuAAC Organosilanes Nanoparticles 



The CNRS, the Agence Nationale pour la Recherche (ANR P2N 2010 MECHANANO and ANR P2N 2012 NanoptPDT), the Direction Générale de l’Armement (PhD Grant to DT), the Czech Science Foundation (P108/12/1356), the BARRANDE project (MSMT 7AMB12FR004), the French embassy in Prague (Grant to KB), the Limousin region through Theranostic program and the Partner University Fund, a program of FACE, are gratefully acknowledged for financial support.


  1. 1.
    Nicole L, Rozes L, Sanchez C (2010) Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv Mater 22(29):3208–3214. doi: 10.1002/adma.201000231 CrossRefGoogle Scholar
  2. 2.
    Zamboulis A, Moitra N, Moreau JJE, Cattoën X, Wong Chi Man M (2010) Hybrid materials: versatile matrices for supporting homogeneous catalysts. J Mater Chem 20(42):9322–9338. doi: 10.1039/c000334d CrossRefGoogle Scholar
  3. 3.
    Hoffmann F, Fröba M (2011) Vitalising porous inorganic silica networks with organic functions-PMOs and related hybrid materials. Chem Soc Rev 40(2):608–620. doi: 10.1039/c0cs00076k CrossRefGoogle Scholar
  4. 4.
    Mehdi A, Réyé C, Corriu R (2011) From molecular chemistry to hybrid nanomaterials. Design and functionalization. Chem Soc Rev 40(2):563–574. doi: 10.1039/B920516K CrossRefGoogle Scholar
  5. 5.
    Macquarrie DJ (1996) Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM. Chem Commun 16:1961–1962. doi: 10.1039/CC9960001961 CrossRefGoogle Scholar
  6. 6.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021. doi: 10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5 CrossRefGoogle Scholar
  7. 7.
    (2010) Themed issue on click Chemistry. Chem Soc Rev 39:1221–1408 Google Scholar
  8. 8.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise Huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed 41(14):2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4 CrossRefGoogle Scholar
  9. 9.
    Tornøe CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: 1,2,3 -triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67(9):3057–3064. doi: 10.1021/jo011148j CrossRefGoogle Scholar
  10. 10.
    Meldal M, Tornøe CW (2008) Cu-catalyzed azide-alkyne cycloaddition. Chem Rev 108(8):2952–3015. doi: 10.1021/cr0783479 CrossRefGoogle Scholar
  11. 11.
    McDonald AR, Dijkstra HP, Suijkerbuijk BMJM, van Klink GPM, van Koten G (2009) “Click” immobilization of organometallic pincer catalysts for C–C coupling reactions. Organometallics 28(16):4689–4699. doi: 10.1021/om900237g CrossRefGoogle Scholar
  12. 12.
    McDonald AR, Franssen N, van Klink GPM, van Koten G (2009) ‘Click’ silica immobilisation of metallo-porphyrin complexes and their application in epoxidation catalysis. J Organomet Chem 694:2153–2162. doi: 10.1016/j.jorganchem.2009.02.020 CrossRefGoogle Scholar
  13. 13.
    Patel K, Angelos S, Dichtel WR, Coskun A, Yang YW, Zink JI, Stoddart JF (2008) Enzyme-responsive snap-top covered silica nanocontainers. J Am Chem Soc 130(8):2382–2383. doi: 10.1021/ja0772086 CrossRefGoogle Scholar
  14. 14.
    Schlossbauer A, Schaffert D, Kecht J, Wagner E, Bein T (2008) Click chemistry for high-density biofunctionalization of mesoporous silica. J Am Chem Soc 130(38):12558–12559. doi: 10.1021/ja803018w CrossRefGoogle Scholar
  15. 15.
    Nakazawa J, Smith BJ, Stack TDP (2012) Discrete complexes immobilized onto click-SBA-15 silica: controllable loadings and the impact of surface coverage on catalysis. J Am Chem Soc 134(5):2750–2759. doi: 10.1021/ja210400u CrossRefGoogle Scholar
  16. 16.
    Nakazawa J, Stack TDP (2008) Controlled loadings in a mesoporous material: click-on silica. J Am Chem Soc 130(44):14360–14361. doi: 10.1021/ja804237b CrossRefGoogle Scholar
  17. 17.
    Malvi B, Sarkar BR, Pati D, Mathew R, Ajithkumar TG, Sen Gupta S (2009) “Clickable” SBA-15 mesoporous materials: synthesis, characterization and their reaction with alkynes. J Mater Chem 19(10):1409–1416. doi: 10.1039/b815350g CrossRefGoogle Scholar
  18. 18.
    Ganai AK, Bhardwaj R, Hotha S, Sen Gupta S, Prasad BLV (2010) `Clicking’ molecular hooks on silica nanoparticles to immobilize catalytically important metal complexes: the case of gold catalyst immobilization. New J Chem 34(11):2662–2670. doi: 10.1039/c0nj00292e CrossRefGoogle Scholar
  19. 19.
    Nakazawa J, Hori T, Stack TDP, Hikichi S (2013) Alkane oxidation by an immobilized nickel complex catalyst: structural and reactivity differences induced by surface-ligand density on mesoporous silica. Chem Asian J 8(6):1191–1199. doi: 10.1002/asia.201300165 CrossRefGoogle Scholar
  20. 20.
    Monge-Marcet A, Pleixats R, Cattoën X, Wong Chi Man M (2013) Catalytic applications of recyclable silica immobilized NHC–ruthenium complexes. Tetrahedron 69(1):341–348. doi: 10.1016/j.tet.2012.10.023 CrossRefGoogle Scholar
  21. 21.
    Monge-Marcet A, Pleixats R, Cattoën X, Wong Chi Man M (2013) Silica-immobilized N, O-prolinate ruthenium benzylidene complexes for catalytic applications. J Sol-Gel Sci Technol 65(1):93–103. doi: 10.1007/s10971-011-2610-9 CrossRefGoogle Scholar
  22. 22.
    Monge-Marcet A, Cattoën X, Alonso DA, Nájera C, Wong Chi Man M, Pleixats R (2012) Recyclable silica-supported prolinamide organocatalysts for direct asymmetric aldol reaction in water. Green Chem 14(6):1601–1610. doi: 10.1039/C2GC35227C CrossRefGoogle Scholar
  23. 23.
    Graffion J, Cojocariu AM, Cattoën X, Ferreira RAS, Fernandes VR, André PS, Carlos LD, Wong Chi Man M, Bartlett JR (2012) Luminescent coatings from bipyridine-based bridged silsesquioxanes containing Eu3+ and Tb3+ salts. J Mater Chem 22:13279–13285. doi: 10.1039/C2JM31289A CrossRefGoogle Scholar
  24. 24.
    Graffion J, Cattoën X, Freitas VT, Ferreira RAS, Wong Chi Man M, Carlos LD (2012) Engineering of metal-free bipyridine-based bridged silsesquioxanes for sustainable solid-state lighting. J Mater Chem 22(14):6711–6715. doi: 10.1039/C2JM15225H CrossRefGoogle Scholar
  25. 25.
    Graffion J, Cattoën X, Wong Chi Man M, Fernandes VR, André PS, Ferreira RAS, Carlos LD (2011) Modulating the photoluminescence of bridged silsesquioxanes incorporating Eu3+-complexed n, n’-diureido-2,2′-bipyridine isomers: application for luminescent solar concentrators. Chem Mater 23:4773–4782. doi: 10.1021/cm2019026 Google Scholar
  26. 26.
    Nobre SS, Cattoën X, Ferreira RAS, Wong Chi Man M, Carlos LD (2010) Efficient spectrally dynamic blue-to-green emission of bipyridine-based bridged silsesquioxanes for solid-state lighting. Phys Status Solidi RRL 4(3–4):55–57. doi: 10.1002/pssr.200903396 CrossRefGoogle Scholar
  27. 27.
    Nobre SS, Cattoën X, Ferreira RAS, Carcel C, de Zea Bermudez V, Wong Chi Man M, Carlos LD (2010) Eu3+-assisted short-range ordering of photoluminescent bridged silsesquioxanes. Chem Mater 22(12):3599–3609. doi: 10.1021/cm1009042 Google Scholar
  28. 28.
    Fernandes M, Ferreira RAS, Cattoën X, Carlos LD, Wong Chi Man M, de Zea Bermudez V (2013) Photoluminescent lamellar bilayer mono-alkyl-urethanesils. J Sol-Gel Sci Technol 65(1):61–73. doi: 10.1007/s10971-012-2739-1 CrossRefGoogle Scholar
  29. 29.
    Fernandes M, Cattoën X, de Zea Bermudez V, Wong Chi Man M (2011) Solvent-controlled morphology of lamellar polysilsesquioxanes: from platelets to microsponges. CrystEngComm 1410–1415. doi: 10.1039/C0CE00385A
  30. 30.
    Kapoor MP, Inagaki S, Ikeda S, Kakiuchi K, Suda M, Shimada T (2005) An alternate route for the synthesis of hybrid mesoporous organosilica with crystal-like pore walls from allylorganosilane precursors. J Am Chem Soc 127(22):8174–8178. doi: 10.1021/ja043062o CrossRefGoogle Scholar
  31. 31.
    Maegawa Y, Waki M, Umemoto A, Shimada T, Inagaki S (2013) A new synthetic approach for functional triisopropoxyorganosilanes using molecular building blocks. Tetrahedron 69(26):5312–5318. doi: 10.1016/j.tet.2013.04.130 CrossRefGoogle Scholar
  32. 32.
    Kappe CO, Van der Eycken E (2010) Click chemistry under non-classical reaction conditions. Chem Soc Rev 39(4):1280–1290. doi: 10.1039/b901973c CrossRefGoogle Scholar
  33. 33.
    Wu P, Malkoch M, Hunt JN, Vestberg R, Kaltgrad E, Finn MG, Fokin VV, Sharpless KB, Hawker CJ (2005) Multivalent, bifunctional dendrimers prepared by click chemistry. Chem Commun 46:5775–5777. doi: 10.1039/b512021g CrossRefGoogle Scholar
  34. 34.
    Moitra N, Moreau JJE, Cattoën X, Wong Chi Man M (2010) Convenient route to water-sensitive sol-gel precursors using click chemistry. Chem Commun 46(44):8416–8418. doi: 10.1039/C0CC03417G CrossRefGoogle Scholar
  35. 35.
    Bürglová K, Moitra N, Hodačová J, Cattoën X, Wong Chi Man M (2011) Click approaches to functional water-sensitive organotriethoxysilanes. J Org Chem 76(18):7326–7333. doi: 10.1021/jo201484n CrossRefGoogle Scholar
  36. 36.
    Toulemon D, Pichon BP, Cattoën X, Wong Chi Man M, Begin-Colin S (2011) 2D assembly of non-interacting magnetic iron oxide nanoparticles via ‘‘click’’ chemistry. Chem Commun 47:11954–11956. doi: 10.1039/c1cc14661k CrossRefGoogle Scholar
  37. 37.
    Toulemon D, Pichon BP, Leuvrey C, Zafeiratos S, Papaefthimiou V, Cattoën X, Bégin-Colin S (2013) Fast assembling of magnetic iron oxide nanoparticles by microwave-assisted copper(I) catalyzed alkyne–azide cycloaddition (CuAAC). Chem Mater 25(14):2849–2854. doi: 10.1021/cm401326p Google Scholar
  38. 38.
    Pichon BP, Pauly M, Marie P, Leuvrey C, Begin-Colin S (2011) Tunable magnetic properties of nanoparticle two-dimensional assemblies addressed by mixed self-assembled monolayers. Langmuir 27(10):6235–6243. doi: 10.1021/la105052z CrossRefGoogle Scholar
  39. 39.
    Pichon BP, Barbillon G, Marie P, Pauly M, Begin-Colin S (2011) Iron oxide magnetic nanoparticles used as probing agents to study the nanostructure of mixed self-assembled monolayers. Nanoscale 3(11):4696–4705. doi: 10.1039/c1nr10729a CrossRefGoogle Scholar
  40. 40.
    Fousseret B, Mougenot M, Rossignol F, Baumard JF, Soulestin B, Boissière C, Ribot F, Jalabert D, Carrion C, Sanchez C, Lejeune M (2010) Inkjet-printing-engineered functional microdot arrays made of mesoporous hybrid organosilicas. Chem Mater 22(13):3875–3883. doi: 10.1021/cm903713q Google Scholar
  41. 41.
    Chen HM, He JH (2009) One-step synthesis of functional chiral porous silica nanorods using an achiral surfactant. Dalton Trans 33:6651–6655. doi: 10.1039/b904803k CrossRefGoogle Scholar
  42. 42.
    Du X, He JH (2010) Elaborate control over the morphology and structure of mercapto-functionalized mesoporous silicas as multipurpose carriers. Dalton Trans 39(38):9063–9072. doi: 10.1039/c0dt00194e CrossRefGoogle Scholar
  43. 43.
    Rambaud F, Vallé K, Thibaud S, Julián-López B, Sanchez C (2009) One-pot synthesis of functional helicoidal hybrid organic-inorganic nanofibers with periodically organized mesoporosity. Adv Funct Mater 19(18):2896–2905. doi: 10.1002/adfm.200900431 CrossRefGoogle Scholar
  44. 44.
    Fowler CE, Khushalani D, Lebeau B, Mann S (2001) Nanoscale materials with mesostructured interiors. Adv Mater 13(9):649–652. doi: 10.1002/1521-4095(200105)13:9<649:AID-ADMA649>3.0.CO;2-G CrossRefGoogle Scholar
  45. 45.
    Moitra N, Trens P, Raehm L, Durand J-O, Cattoën X, Wong Chi Man M (2011) Facile route to functionalized mesoporous silica nanoparticles by click chemistry. J Mater Chem 21(35):13476–13482. doi: 10.1039/C1JM12066B CrossRefGoogle Scholar
  46. 46.
    Malvi B, Panda C, Dhar BB, Gupta SS (2012) One pot glucose detection by [FeIII(biuret-amide)] immobilized on mesoporous silica nanoparticles: an efficient HRP mimic. Chem Commun 48(43):5289–5291. doi: 10.1039/C2CC30970J CrossRefGoogle Scholar
  47. 47.
    Dickschat AT, Behrends F, Bühner M, Ren J, Weiß M, Eckert H, Studer A (2012) Preparation of bifunctional mesoporous silica nanoparticles by orthogonal click reactions and their application in cooperative catalysis. Chem Eur J 18(52):16689–16697. doi: 10.1002/chem.201200499 CrossRefGoogle Scholar
  48. 48.
    Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, Lopez GP, Brinker CJ (2000) Rapid prototyping of patterned functional nanostructures. Nature 405(6782):56–60. doi: 10.1038/35011026 CrossRefGoogle Scholar
  49. 49.
    Monton MRN, Forsberg EM, Brennan JD (2011) Tailoring sol–gel-derived silica materials for optical biosensing. Chem Mater 24(5):796–811. doi: 10.1021/cm202798e Google Scholar
  50. 50.
  51. 51.
    Mougenot M, Lejeune M, Baumard JF, Boissiere C, Ribot F, Grosso D, Sanchez C, Noguera R (2006) Ink jet printing of microdot arrays of mesostructured silica. J Am Ceram Soc 89(6):1876–1882. doi: 10.1111/j.1551-2916.2006.01048.x CrossRefGoogle Scholar
  52. 52.
    De los Cobos O, Fousseret B, Lejeune M, Rossignol F, Dutreilh-Colas M, Carrion C, Boissière C, Ribot F, Sanchez C, Cattoën X, Wong Chi Man M, Durand J-O (2012) Tunable multifunctional mesoporous silica microdots arrays by combination of inkjet printing, EISA, and click chemistry. Chem Mater 24(22):4337–4342. doi: 10.1021/cm3022769 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xavier Cattoën
    • 1
    • 2
    • 3
  • Achraf Noureddine
    • 1
  • Jonas Croissant
    • 1
  • Nirmalya Moitra
    • 1
  • Kristýna Bürglová
    • 1
    • 4
  • Jana Hodačová
    • 4
  • Olivia de los Cobos
    • 5
  • Martine Lejeune
    • 5
  • Fabrice Rossignol
    • 5
  • Delphine Toulemon
    • 6
  • Sylvie Bégin-Colin
    • 6
  • Benoît P. Pichon
    • 6
  • Laurence Raehm
    • 1
  • Jean-Olivier Durand
    • 1
  • Michel Wong Chi Man
    • 1
  1. 1.Institut Charles Gerhardt Montpellier (UMR 5253 CNRS-UM2-ENSCM-UM1)MontpellierFrance
  2. 2.Univ. Grenoble Alpes, Inst NEELGrenobleFrance
  3. 3.CNRS, Inst NEELGrenobleFrance
  4. 4.Department of Organic ChemistryInstitute of Chemical TechnologyPraha 6Czech Republic
  5. 5.Laboratoire de Science des Procédés Céramiques et de Traitements de Surface (SPCTS)UMR CNRS 7315, CECLimogesFrance
  6. 6.Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 (CNRS-UdS-ECPM)Strasbourg Cedex 2France

Personalised recommendations