Advertisement

Journal of Sol-Gel Science and Technology

, Volume 68, Issue 1, pp 141–149 | Cite as

Substitution effects of La3+ ions on the structural and magnetic properties of Co2Y hexaferrites synthesized by sol–gel autocombustion method

  • Ihsan Ali
  • Mukhtar Ahmad
  • M. U. Islam
  • M. S. Awan
Original paper

Abstract

Y-type hexaferrite Sr2Co2LaxFe12−xO22 (x = 0.0, 0.05, 0.10, 0.15, 0.20) powders have been synthesized using the sol–gel autocombustion method. Differential Scanning Calorimetry, Thermogravimetry, Fourier Transform Infra-Red spectroscopy, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and vibrating sample magnetometery were used to investigate the samples. XRD patterns confirm the formation of Y-type hexaferrite phase. SEM patterns show that mostly grains exhibit rod shape and some appear in the form of hexagonal platelet shape. The rod or rice shape hexaferrite may be used in catalysis, information storage, surface enhanced Raman scattering, imaging and sensing. The samples with hexagonal platelet-like shape particles may be suitable as microwave absorbing materials. The energy dispersive X-ray spectroscopy spectrum shows the presence of dissolved reactants Sr, Co, La and Fe. The saturation magnetization (Ms) calculated using the law of approach to saturation decrease with the increasing of lanthanum (La3+) contents. The decrease in ‘Ms’ may be because of magnetic dilution and spin canting and hence reduction in the super-exchange interactions. The retentivity (Mr) and coercivity (Hc) enhance with the increase of La3+ contents. The enhancement in coercivity from 193 to 598.6 Oe may be because of increase in the porosity of samples with the increase of La3+ contents. The coercivity of the synthesized materials is few hundred oersteds (Oe), which may be suitable for security, switching, sensing, high frequency applications and is also favorable for electromagnetic materials.

Keywords

Hexaferrites Sol–gel Microstructure Magnetic measurements High frequency applications 

References

  1. 1.
    Almeida RM, Paraguassu W, Pires DS, Corrêa RR, Paschoal CWA (2009) Ceram Int 35:2443–2447CrossRefGoogle Scholar
  2. 2.
    Bai Y, Zhou J, Gui Z, Yue Z, Li L (2003) Mater Sci Eng, B 99:266–269CrossRefGoogle Scholar
  3. 3.
    Ahmed MA, Okasha N, Kershi RM (2008) J Magn Magn Mater 320:1146–1150CrossRefGoogle Scholar
  4. 4.
    Bay Y, Xu F, Qiao L, Zhou J (2009) J Alloys Compd 473:505–508CrossRefGoogle Scholar
  5. 5.
    Jotania RB, Khomane RB, Chauhan CC, Menon SK, Kulkarni BD (2008) J Magn Magn Mater 320:1095–1101CrossRefGoogle Scholar
  6. 6.
    Han M, Ou Yu, Chen W, Deng L (2009) J Alloys Compd 474:185–189CrossRefGoogle Scholar
  7. 7.
    Haijun Z, Xi Y, Liangying Z (2002) J Eur Ceram Soc 22:835–840CrossRefGoogle Scholar
  8. 8.
    Shin JY, Oh JH (1993) IEEE Trans Magn 29:3437–3439CrossRefGoogle Scholar
  9. 9.
    Abdullah MH, Yusoff AN (1996) J Alloys Compd 233:129–135CrossRefGoogle Scholar
  10. 10.
    Mali A, Ataie A (2005) Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scr Mater 53:1065–1070CrossRefGoogle Scholar
  11. 11.
    Javed Iqbal M, Naeem Ashiq M (2008) Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem Eng J 136:383–389CrossRefGoogle Scholar
  12. 12.
    Ali I, Islam MU, Awan MS, Ahmad M Effects of heat-treatment time on the structural, dielectric, electrical and magnetic properties of BaM hexaferrites. J Mater Eng Perform doi:  10.1007/s11665-013-0484-4
  13. 13.
    Mallick KK, Shepherd P, Green RJ (2007) Dielectric properties of M-type barium hexaferrite prepared by co-precipitation. J Eur Ceram Soc 27:2045–2052CrossRefGoogle Scholar
  14. 14.
    Ali Ihsan, Islam MU, Awan MS, Ahmad M (2013) Effects of Ga-Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol-gel auto-combustion route, Accepted in JALCOM 547 118–125Google Scholar
  15. 15.
    Ashiq MN, Iqbal MJ, Gul IH (2009) Structural, magnetic and dielectric properties of Zr-Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J Alloy Compd 487:341–345CrossRefGoogle Scholar
  16. 16.
    Ali I, Islam MU, Awan MS, Ahmad M, Ashiq MN, Naseem S (2013) Effect of Tb3+ substitution on the structural and magnetic properties of M-type hexaferrites synthesized by sol-gel auto-combustion technique. J Alloys Comp 550:564–572CrossRefGoogle Scholar
  17. 17.
    Ali I, Islam MU, Awan MS, Ahmad M, Asif Iqbal M Structural, Electrical and Microstructure Properties of Nanostructured Calcium Doped Ba-Hexaferrites Synthesized by Sol-gel Method. J Supercond Nov Magn doi:  10.1007/s10948-013-2167-7
  18. 18.
    Ali I, Islam MU, Awan MS, Ahmad M, Asif Iqbal M. Structural and Magnetic Properties of Nano-structured Eu3+ Substituted M-Type Hexaferrites Synthesized by Sol-Gel Auto-combustion Technique. J Supercond Nov Magn doi:  10.1007/s10948-013-2180-x
  19. 19.
    Zhidong H, Limin D, Ze W (2006). Structure of BaLaxFe12−x O19/Si02 synthesized by sol-gel method. J Rare Earths, Vol. 24, Spec. Issue, p. 75Google Scholar
  20. 20.
    Murtaza Rai G, Iqbal MA, Kubra KT (2010) Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J Alloy Compd 495:229–233CrossRefGoogle Scholar
  21. 21.
    Aen F, Niazi SB, Islam MU, Ahmad M, Rana MU (2011) Effect of holmium on the magnetic and electrical properties of barium based W-type hexagonal ferrites. Ceram Int 37:1725–1729CrossRefGoogle Scholar
  22. 22.
    Rezlescu N, Doroftei C, Rezlescu E, Popa PD (2008) The influence of heat-treatment on microstructure and magnetic properties of rare-earth substituted SrFe12O19. J Alloy Compd 451:492–496CrossRefGoogle Scholar
  23. 23.
    Iqbal MJ, Ashiq MN, Gomez PH, Munoz JM (2010) J Alloys Compd 500:113–116CrossRefGoogle Scholar
  24. 24.
    Chen N, Yang K, Gu M (2010) J Alloys Compd 490:609–612CrossRefGoogle Scholar
  25. 25.
    Wagner TR (1998) J Solid State Chem 136:120CrossRefGoogle Scholar
  26. 26.
    Iqbal MJ, Ashiq MN, Gomez PH, Munoz JM (2007) Script Mater 57:1093–1096CrossRefGoogle Scholar
  27. 27.
    Skomski R, Coey JMD, Permanent magnetism, British Library Cataloguing-in-Publication data, ISBN 0750304782Google Scholar
  28. 28.
    Srivastava D, Lee I (2006) Adv Mater 18:2471–2475CrossRefGoogle Scholar
  29. 29.
    Wang H, Brandle DW, Le F, Nordlander P, Halas NJ (2006) Nano Lett 6:827–832CrossRefGoogle Scholar
  30. 30.
    Xua J, Zoua H, Li H, Li G, Gana S, Hong G (2010) J Alloy Comp 490(1–2):552–556CrossRefGoogle Scholar
  31. 31.
    Rane MV, Bahadur D, Kulkarni SD, Date SK (1999) J Magn Magn Mater 195:L256CrossRefGoogle Scholar
  32. 32.
    Rane MV, Bahadur D, Nigam AK, SrivastavaRane CM (1999) J Magn Magn Mater 192:288CrossRefGoogle Scholar
  33. 33.
    Dung NK, Huyen NTL (2009) J Sci Mathematics-Phys 25:199–205Google Scholar
  34. 34.
    Smit J, Wijn HPJ (1959) Ferrites. John Wiley and Sons, Inc, New YorkGoogle Scholar
  35. 35.
    Rezlescu E, Rezlescu N, Pasnicu C, Craus ML, Popa PD (1996) Cryst Res Technol 31:343–352CrossRefGoogle Scholar
  36. 36.
    Li Y, Liu R, Zhang Z, Xiong C (2000) Mater Chem Phys 64:256–259CrossRefGoogle Scholar
  37. 37.
    Hemeda DM, Hemeda OM (2008) Electrical, structural, magnetic and transport properties of Zn2BaFe16O27 doped with Cu2+. J Magn Mater 320:1557–1562CrossRefGoogle Scholar
  38. 38.
    Hessien MM, Rashad MM, El-Barawy K (2008) J Magn Magn Mater 320:336–343CrossRefGoogle Scholar
  39. 39.
    Liu XS, Gomez H, Huang K, Zhou SQ, Wang Y, Cai X, Sun HJ, Ma B (2006) J Magn Magn Mater 305:524–528CrossRefGoogle Scholar
  40. 40.
    Rai GM, Iqbal MA, Kubra KT (2010) J Alloys Compd 495:229–233CrossRefGoogle Scholar
  41. 41.
    Smit J, Wijn HPJ (1954) Adv Electron Phys 6:69CrossRefGoogle Scholar
  42. 42.
    Bai Y, Xua F, Qiaoa L, Zhou J (2009) Effect of Mn doping on physical properties of Y-type hexagonal ferrite. J Alloy Comp 473:505–508Google Scholar
  43. 43.
    Pullar RC, Bdikin IK, Bhattacharya AK (2012) Magnetic properties of randomly oriented BaM, SrM, Co2Y, Co2Z and Co2W hexagonal ferrite fibres. J Eur Ceram Soc 32:905–913CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Ihsan Ali
    • 1
  • Mukhtar Ahmad
    • 1
  • M. U. Islam
    • 1
  • M. S. Awan
    • 2
  1. 1.Department of PhysicsBahauddin Zakariya UniversityMultanPakistan
  2. 2.Center for Micro and Nano Devices, Department of PhysicsCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations