Journal of Sol-Gel Science and Technology

, Volume 68, Issue 1, pp 67–74 | Cite as

Low-temperature versus oxygen plasma treatment of water-based TiO2 paste for dye-sensitized solar cells

  • Mateja Hočevar
  • Urša Opara Krašovec
  • Marko Topič
Original Paper



Peroxotitanic acid Sol–gel TiO2 paste Low-temperature treatment Oxygen plasma treatment Dye-sensitized solar cell 



The authors gratefully acknowledge the group of Prof. Miran Mozetič at the Jožef Stefan Institute (IJS, Ljubljana, Slovenia) for the oxygen plasma treatment. Jožko Fišer (IJS) is acknowledged for measurements of the layers’ thicknesses and Jože Buh (IJS) for the SEM analyses of the TiO2 layers. M. H. is grateful for the financial support given by the Slovenian Research Agency (Z2–4152–1538). The work was also partially funded by the Slovenian Research Agency under the P2–0197 program.


  1. 1.
    O’Regan B, Grätzel M (1991) A low–cost, high efficiency solar cells based on dye-sensitized colloidal TiO2 films. Nature 353:737–740CrossRefGoogle Scholar
  2. 2.
    Hinsch A, Veurman W, Brandt H, Loayza Aguirre R, Bialecka K, Flarup Jensen K (2012) Worldwide first fully up-scaled fabrication of 60 × 100 cm2 dye solar module prototypes. Prog Photovolt Res Appl 20:698–710CrossRefGoogle Scholar
  3. 3.
    Hočevar M, Opara Krašovec U, Bokalič M, Topič M, Veurman W, Brandt H, Hinsch A (2013) Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J Ind Eng Chem 19:1464–1469CrossRefGoogle Scholar
  4. 4.
    Hočevar M, Berginc M, Opara Krašovec U, Topič M (2012) In: Aparicio M, Jitianu A, Klein LC (eds) Sol–gel processing for conventional and alternative energy. Springer, New YorkGoogle Scholar
  5. 5.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663CrossRefGoogle Scholar
  6. 6.
    Miettunen K, Halme J, Lund P (2013) Metallic and plastic dye solar cells. WIREs Energy Environ 2:104–120Google Scholar
  7. 7.
    Lee KM, Hsu YC, Ikegami M, Miyasaka T, Thomas KRJ, Lin JT, Ho KC (2011) Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. J Power Sources 196:2416–2421CrossRefGoogle Scholar
  8. 8.
    Weerasinghea HC, Sirimanne PM, Franks GV, Simon GP, Cheng YB (2010) Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells. J Photochem Photobiol A Chem 213:30–36CrossRefGoogle Scholar
  9. 9.
    Kalyanasundaram K (2010) Dye-sensitized solar cells. EPFL Press, LausanneGoogle Scholar
  10. 10.
    Yamaguchi T, Tobe N, Matsumoto D, Nagai T, Arakawa H (2010) Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion efficiency of 7.6%. Sol Energ Mat Sol C 94:812–816CrossRefGoogle Scholar
  11. 11.
    Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011) Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science 334:629–634CrossRefGoogle Scholar
  12. 12.
    He X-L, Liu M, Yang G-J, Yao H-L, Fan S-Q, Li C-J (2013) Photovoltaic performance degradation and recovery of the flexible dye-sensitized solar cells by bending and relaxing. J Power Sources 226:173–178CrossRefGoogle Scholar
  13. 13.
    Yen W-H, Hsieh C-C, Hung C-Y, Wang H-W, Tsui M-C (2010) Flexible TiO2 working electrode for dye-sensitized solar cells. J Chin Chem Soc 57:1162–1166Google Scholar
  14. 14.
    Lin L-Y, Lee C-P, Tsai K-W, Yeh M-H, Chen C-Y, Vittal R, Wu C-G, Ho K-C (2012) Low-temperature flexible Ti/TiO2 photoanode for dye-sensitized solar cells with binder-free TiO2 paste. Prog Photovolt Res Appl 20:181–190CrossRefGoogle Scholar
  15. 15.
    Gutiérrez-Tauste D, Zumeta I, Vigil E, Hernández-Fenollosa MA, Domènech X, Ayllón JA (2005) New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation. J Photochem Photobiol A Chem 175:165–171CrossRefGoogle Scholar
  16. 16.
    Zhang D, Yoshida T, Minoura H (2003) Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface. Adv Mater 15:814–817CrossRefGoogle Scholar
  17. 17.
    Li Y, Yoo K, Lee D-K, Kim JH, Park N-G, Kim K, Ko MJ (2010) Highly bendable composite photoelectrode prepared from TiO2/polymer blend for low temperature fabricated dye-sensitized solar cells. Curr Appl Phys 10:E171–E175CrossRefGoogle Scholar
  18. 18.
    Lindström H, Holmberg A, Magnusson E, Malmqvist L, Hagfeldt A (2001) A new method to make dye-sensitized nanocrystalline solar cells at room temperature. J Photochem Photobiol A Chem 145:107–112CrossRefGoogle Scholar
  19. 19.
    Lindström H, Holmberg A, Magnusson E, Lindquist SE, Malmqvist L, Hagfeldt A (2001) A new method for manufacturing nanostructured electrodes on plastic substrates. Nano Lett 1:97–100CrossRefGoogle Scholar
  20. 20.
    Dürr M, Schmid A, Obermaier M, Rosselli S, Yasuda A, Nelles G (2005) Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers. Nat Mater 4:607–611CrossRefGoogle Scholar
  21. 21.
    Ge L, Xu MX, E L, Tian YM, Fang HB (2005) Preparation of TiO2 thin films using inorganic peroxo titanic complex and autoclaved sols as precursors. Key Eng Mater 280:809–812CrossRefGoogle Scholar
  22. 22.
    Modic M, Junkar I, Vesel A, Mozetič M (2012) Aging of plasma treated surfaces and their effects on platelet adhesion and activation. Surf Coat Technol 213:98–104CrossRefGoogle Scholar
  23. 23.
    De Geyter N, Morent R, Leys C (2008) Influence of ambient conditions on the ageing behaviour of plasma-treated PET surfaces. Nucl Instrum Methods Phys Res B 266:3086–3090CrossRefGoogle Scholar
  24. 24.
    Mozetič M (2011) Extremely non-equilibrium oxygen plasma for direct synthesis of metal oxide nanowires on metallic substrates. J Phys D Appl Phys 44:1–9Google Scholar
  25. 25.
    Mancini SD, Nogueira AR, Rangel EC, Da Cruz NC (2013) Solid-state hydrolysis of postconsumer polyethylene terephthalate after plasma treatment. J Appl Polym Sci 127:1989–1996CrossRefGoogle Scholar
  26. 26.
    Eleršič K, Junkar I, Modic M, Zaplotnik R, Vesel A, Cvelbar U (2011) Modification of surface morphology of graphite by oxygen plasma treatment. Mater Tehnol 45:232–239Google Scholar
  27. 27.
    Liu R, Yang WD, Qiang LS (2012) Enhanced efficiency for dye-sensitized solar cells using a surface-treated photo-anode. J Power Sources 199:418–425CrossRefGoogle Scholar
  28. 28.
    Li Y, Ding JN, Yuan NY, Bai L, Hu HW, Wang XQ (2013) The influence of surface treatment on dye-sensitized solar cells based on TiO2 nanofibers. Mater Lett 97:74–77CrossRefGoogle Scholar
  29. 29.
    Tak Kim J, Ho Kim S (2011) Surface modification of TiO2 electrode by various over-layer coatings and O2 plasma treatment for dye sensitized solar cells. Sol Energ Mat Sol C 95:336–339CrossRefGoogle Scholar
  30. 30.
    Wang J, Lin ZQ (2010) Dye sensitized TiO2 nanotube solar cells with markedly enhanced performance via rational surface engineering. Chem Mater 22:579–584CrossRefGoogle Scholar
  31. 31.
    Berginc M, Opara Krašovec U, Hočevar M, Topič M (2008) Performance of dye-sensitized solar cells based on Ionic liquids: effect of temperature and iodine concentration. Thin Solid Films 516:7155–7159CrossRefGoogle Scholar
  32. 32.
    Hočevar M, Opara Krašovec U, Berginc M, Dražić G, Hauptman N, Topič M (2008) Development of TiO2 pastes modified with Pechini sol-gel method for high efficiency dye-sensitized solar cell. J Solgel Sci Technol 48:156–162CrossRefGoogle Scholar
  33. 33.
    Zaplotnik R, Vesel A, Mozetic M (2013) A powerful remote source of O atoms for the removal of hydrogenated carbon deposits. J Fusion Energy 32:78–87CrossRefGoogle Scholar
  34. 34.
    Hočevar M, Opara Krašovec U, Berginc M, Topič M (2010) One step preparation of TiO2 layer for high efficiency dye-sensitized solar cell. Acta Chim Slov 57:405–409Google Scholar
  35. 35.
    Drev M, Opara Krašovec U, Hočevar M, Berginc M, Kržmanc Maček M, Topič M (2011) Pechini based titanium sol as a matrix in TiO2 pastes for dye-sensitized solar cell application. J Solgel Sci Technol 59:245–251CrossRefGoogle Scholar
  36. 36.
    Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) Sponge-like TiO2 layers for dye-sensitized solar cells. J Solgel Sci Technol 53:647–654CrossRefGoogle Scholar
  37. 37.
    Ge L, Xu MX, Sun M, Fang HB (2006) Low-temperature synthesis of photocatalytic TiO2 thin film from aqueous anatase precursor sols. J Solgel Sci Technol 38:47–53CrossRefGoogle Scholar
  38. 38.
    Ge L, Xu MX (2007) Fabrication and characterization of TiO2 photocatalytic thin film prepared from peroxo titanic acid sol. J Solgel Sci Technol 43:1–7CrossRefGoogle Scholar
  39. 39.
    Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218CrossRefGoogle Scholar
  40. 40.
    Tsoi S, Fok E, Sit JC, Veinot JGC (2004) Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization. Langmuir 20:10771–10774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mateja Hočevar
    • 1
  • Urša Opara Krašovec
    • 1
  • Marko Topič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations