Journal of Sol-Gel Science and Technology

, Volume 67, Issue 3, pp 639–645 | Cite as

Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route

  • Wenyan Li
  • Xingzhong GuoEmail author
  • Yang Zhu
  • Yang Hui
  • Kazuyoshi Kanamori
  • Kazuki NakanishiEmail author
Original Paper


Monolithic macroporous titanium dioxide (TiO2) derived from ionic precursors has been successfully prepared via the sol–gel route accompanied by phase separation in the presence of formamide (FA) and poly(vinylpyrrolidone) (PVP). The addition of FA promotes the gelation, whereas PVP enhances the polymerization-induced phase separation. Appropriate choice of the starting compositions allows the production of cocontinuous macroporous TiO2 monoliths in large dimensions, and controls the size of macropores. The resultant dried gel is amorphous, whereas anatase and rutile phases are precipitated at 500 and 900 °C respectively, without spoiling the macroporous morphology. Nitrogen adsorption–desorption measurements revealed that the dried gels exhibits mesostructure with a median pore size of about 3 nm and BET surface area of 228 m2/g, whereas 15 nm and 73 m2/g for the gels calcined at 600 °C.


Titanium dioxide Monolith Macropores Sol–gel Phase separation 


  1. 1.
    Shieh D-L, Lin Y-S, Yeh J-H, Chen S-C, Lin B-C, Lin J-L (2012) N-doped, porous TiO2 with rutile phase and visible light sensitive photocatalytic activity. Chem Commun 48:2528–2530CrossRefGoogle Scholar
  2. 2.
    Schattauer S, Reinhold B, Albrecht S, Fahrenson C, Schubert M, Janietz S, Neher D (2012) Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol–gel approach. Colloid Polym Sci 290:1843–1854Google Scholar
  3. 3.
    Kimura M, Sakai R, Sato S, Fukawa T, Ikehara T, Maeda R, Mihara T (2012) Sensing of vaporous organic compounds by TiO2 porous films covered with polythiophene layers. Adv Funct Mater 22:469–476CrossRefGoogle Scholar
  4. 4.
    Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  5. 5.
    Kimling MC, Caruso RA (2012) Sol–gel synthesis of hierarchically porous TiO2 beads using calcium alginate beads as sacrificial templates. J Mater Chem 22:4073–4082CrossRefGoogle Scholar
  6. 6.
    Jiang P, Lin H, Xing R, Jiang J, Qu F (2012) Synthesis of multifunctional macroporous–mesoporous TiO2-bioglasses for bone tissue engineering. J Sol Gel Sci Technol 61:421–428CrossRefGoogle Scholar
  7. 7.
    Wang X, Yu JC, Ho C, Hou Y, Fu X (2005) Photocatalytic activity of a hierarchically macro/mesoporous Titania. Langmuir 21:2552–2559CrossRefGoogle Scholar
  8. 8.
    Yu J, Yu JC, Leung MKP, Ho W, Cheng B, Zhao X, Zhao J (2003) Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous Titania. J Catal 217:69–78Google Scholar
  9. 9.
    Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540CrossRefGoogle Scholar
  10. 10.
    Caruso RA, Giersig M, Willig F, Antonietti M (1998) Porous “Coral-like” TiO2 structures produced by templating polymer gels. Langmuir 14:6333–6336CrossRefGoogle Scholar
  11. 11.
    Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951CrossRefGoogle Scholar
  12. 12.
    Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112CrossRefGoogle Scholar
  13. 13.
    Konishi J, Fujita K, Nakanishi K, Hirao K, Morisato K, Miyazaki S, Ohira M (2009) Sol–gel synthesis of macro–mesoporous Titania monoliths and their applications to chromatographic separation media for organophosphate compounds. J Chromatogr A 1216:7375–7383CrossRefGoogle Scholar
  14. 14.
    Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Monolithic TiO2 with controlled multiscale porosity via a template-free sol–gel process accompanied by phase separation. Chem Mater 18:6069–6074CrossRefGoogle Scholar
  15. 15.
    Konishi J, Fujita K, Nakanishi K, Hirao K (2004) Macroporous morphology induced by phase separation in sol–gel systems derived from Titania colloid. Mater Res Soc Symp Proc 788:391–396Google Scholar
  16. 16.
    Hasegawa G, Kanamori K, Nakanishi K, Hanada T (2010) Facile preparation of hierarchically porous TiO2 monoliths. J Am Ceram Soc 93:3110–3115CrossRefGoogle Scholar
  17. 17.
    Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol–gel process accompanied by phase separation and the solvothermal process. Chem Mater 20:2165–2173CrossRefGoogle Scholar
  18. 18.
    Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Chem Mater 19:3393–3398CrossRefGoogle Scholar
  19. 19.
    Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) Sol–gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn 115:925–928CrossRefGoogle Scholar
  20. 20.
    Kido Y, Nakanishi K, Miyasaka A, Kanamori K (2012) Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) Salts via an epoxide-mediated sol–gel process. Chem Mater 24:2071–2077CrossRefGoogle Scholar
  21. 21.
    Hasegawa G, Ishihara Y, Kanamori K, Miyazaki K, Yamada Y, Nakanishi K, Abe T (2011) Facile preparation of monolithic LiFePO4/carbon composites with well-defined macropores for a lithium-ion battery. Chem Mater 23:5208–5216CrossRefGoogle Scholar
  22. 22.
    Tokudome Y, Miyasaka A, Nakanishi K, Hanada T (2011) Synthesis of hierarchical macro/mesoporous dicalcium phosphate monolith via epoxide-mediated sol–gel reaction from ionic precursors. J Sol Gel Sci Technol 57:269–278CrossRefGoogle Scholar
  23. 23.
    Guo X, Li W, Nakanishi K, Kanamori K, Zhu Y, Yang H (2013) Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. J Eur Ceram Soc 33:1967–1974CrossRefGoogle Scholar
  24. 24.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Chemistry, Graduate School of ScienceKyoto UniversityKyotoJapan

Personalised recommendations