Journal of Sol-Gel Science and Technology

, Volume 67, Issue 3, pp 545–555 | Cite as

Synthesis of mesoporous SnO2 nanomaterials with selective gas-sensing properties

  • Lei Li
  • Huiming Lin
  • Fengyu Qu
Original Paper


Using SBA-15/KIT-5/KIT-6 as the hard templates, the mesoporous SnO2 nanomaterials with different structures were synthesized by nanocasting. X-ray diffraction, transmission electron microscopy, and nitrogen adsorption isotherms were used to testify their structure characteristics. These mesoporous SnO2 nanomaterials showed high specific surface areas (57–96 m2 g−1) and pore volume (0.17–0.27 cm3 g−1). The nanopore of these templates makes the nanosize particle of the final mesoporous SnO2 nanomaterials (4–9 nm) at last. The sensing properties of acetone, ethyl alcohol and methyl alcohol were investigated. The response of SnO2-15, SnO2-5, and SnO2-6 are 17.0, 19.5, and 16.1, respectively as the concentration of ethyl alcohol on 200 ppm. The sensitivity of SnO2-5 is 28.2 as the concentration of acetone was increased to 200 ppm. With the large surface area, high pore volume, and nanosized particles (close to 2 L = 6 nm of SnO2), the SnO2-5 show four fold enhancement in sensitivity compared to commercial SnO2 powder and low detection limit (even at 200 ppb). The surface area and particle size play a significant party in the gas response. With the large surface area and smallest particle size, SnO2-5 shows the highest sensitivity of all. These mesoporous nanomaterials show well potential application on the gas response.


SnO2 Mesoporous Replicated synthesis Gas sensor 



Financial support for this study was provided by the National Natural Science Foundation of China (21171045, 21101046), Natural Science Foundation of Heilongjiang Province of China ZD201214, Program for Scientific and Technological Innovation team Construction in Universities of Heilongjiang province (2011TD010), Doctoral Initiation Fund of Harbin Normal University (20102329110002), Foundation of Harbin Educational Committee (12521164).


  1. 1.
    Kresge CT, Leonowicz ME, Roth WJ, Vartulli JC, Beck JS (1992) Nature 359:710–712CrossRefGoogle Scholar
  2. 2.
    Beck JS, Vartulli JC, Roth WJ, Leonowicz ME, Schmitt KD, Olson DH, Sheppard EW, NcCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834–10843CrossRefGoogle Scholar
  3. 3.
    Scott BJ, Wirnsberger G, Stucky GD (2001) Chem Mater 13:3140–3150CrossRefGoogle Scholar
  4. 4.
    Wark M, Rohlfing Y, Altindag Y, Wellmann H (2003) Phys Chem Chem Phys 5:5188–5194CrossRefGoogle Scholar
  5. 5.
    Bhat SD, Naidu BVK, Shanbhag GV, Halligudi SB, Sairam M, Aminabhavi TM (2006) Sep. Pur. Technol 49:56–63CrossRefGoogle Scholar
  6. 6.
    Jiang Q, Wu ZY, Wang YM, Cao Y, Zhou CF, Zhu JH (2006) J Mater Chem 16:1536–1542CrossRefGoogle Scholar
  7. 7.
    Zhai QZ, Hu WH, Huang BL, Wang CY (2012) J Sol–Gel Sci Technol 63:435–444CrossRefGoogle Scholar
  8. 8.
    Li GJ, Kawi S (1999) Sens Actuators B 59:1–8CrossRefGoogle Scholar
  9. 9.
    Gierszal KP, Kim TW, Ryoo R, Jaroniec M (2005) J. Phys. Chem. B 109:8774–8778CrossRefGoogle Scholar
  10. 10.
    Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  11. 11.
    Chang SC, Huang MH (2008) J Phys Chem C 112:2304–2306CrossRefGoogle Scholar
  12. 12.
    Wagner T, Waitz T, Roggenbuck J (2007) Thin Solid Films 515:8360–8363CrossRefGoogle Scholar
  13. 13.
    Liu Z, Zhang D, Han S, Li C, Tang T, Jin W, Liu X, Lei B, Zhou C (2003) Adv Mater 15:1754–1757CrossRefGoogle Scholar
  14. 14.
    Liu Y, Dong J, Liu M (2004) Adv Mater 16:353–356CrossRefGoogle Scholar
  15. 15.
    Dai ZR, Pan ZW, Wang ZL (2002) J Am Chem Soc 124:8673–8680CrossRefGoogle Scholar
  16. 16.
    Hu JQ, Ma XL, Shang NG, Xie ZY, Wong NB, Lee CS, Lee ST (2002) J. Phys. Chem. B 106:3823–3826CrossRefGoogle Scholar
  17. 17.
    Waghoo G, Jayaram RV, Joshi MV (1999) Synth Commun 29:513–520CrossRefGoogle Scholar
  18. 18.
    Dimitrov M, Tsoncheva T, Shao SF, Koehn R (2010) Appl Catal B 94:158–165CrossRefGoogle Scholar
  19. 19.
    Ye Q, Wang J, Zhao JS, Yan LN, Cheng SY, Kang TF, Dai HX (2010) Catal Lett 138:56–61CrossRefGoogle Scholar
  20. 20.
    Katsuki A, Fukui K (1998) Sens Actuators B 52:30–37CrossRefGoogle Scholar
  21. 21.
    Yin XM, Li CC, Zhang M, Hao QY, Liu S, Li QH, Chen LB, Wang TH (2009) Nanotechnology 20:455503–455507CrossRefGoogle Scholar
  22. 22.
    Firooz AA, Mahjoub AR, Khodadadi AA (2009) Sens Actuators B 141:89–96CrossRefGoogle Scholar
  23. 23.
    Choi YJ, Hwang IS, Park JG, Choi KJ, Park JH, Lee JH (2008) Nanotechnology 19:095508CrossRefGoogle Scholar
  24. 24.
    Liu Y, Koep E, Liu ML (2005) Chem Mater 17:3997–4000CrossRefGoogle Scholar
  25. 25.
    Zhang J, Liu XH, Wu SH, Xu MJ, Guo XZ, Wang SR (2010) J Mater Chem 20:6453–6459CrossRefGoogle Scholar
  26. 26.
    Oliaee SN, Khodadadi A, Mortazavi Y, Alipour S (2010) Sens Actuators B 147:400–405CrossRefGoogle Scholar
  27. 27.
    Park JA, Moon J, Lee SJ, Kim SH, Chu HY, Zyung T (2010) Sens Actuators B 145:592–595CrossRefGoogle Scholar
  28. 28.
    Jain K, Pant RP, Lakshmikumar ST (2006) Sens Actuators B 113:823–829CrossRefGoogle Scholar
  29. 29.
    Moon WJ, Yu JH, Choi GM (2001) Sens Actuators B 80:21–27CrossRefGoogle Scholar
  30. 30.
    Wu X, Sui JH, Cai W, Qu FY (2008) Mater Chem Phys 112:325–328CrossRefGoogle Scholar
  31. 31.
    Han YT, Wu X, Shen GZ, Gong LH, Qu FY, Bando Y, Sekiguchi T, Fabbri F, Golberg D (2010) J Phys Chem C 114:8235–8240CrossRefGoogle Scholar
  32. 32.
    Han YT, Wu X, Ma YL, Gong LH, Qu FY, Fan HJ (2011) Cryst Eng Commun 13:3506–3510CrossRefGoogle Scholar
  33. 33.
    Liu SQ, Xie MJ, Li YX, Guo XF, Ji WJ, Ding WP (2010) Mater Chem Phys 123:109–113CrossRefGoogle Scholar
  34. 34.
    Zhao DY, Feng J, Huo Q, Melosh N, Fredrickson GH, Chemlka BF, Stucky GD (1998) Science 279:548–552CrossRefGoogle Scholar
  35. 35.
    Kim TW, Kleitz F, Paul B, Ryoo R (2005) J Am Chem Soc 127:7601–7610CrossRefGoogle Scholar
  36. 36.
    Kleitz F, Liu D, Anilkumar GM, Solovyov LA, Shmakov AN, Ryoo R (2003) J. Phys. Chem. B 107:14296–14300CrossRefGoogle Scholar
  37. 37.
    Zhang Y, He XL, Li JP, Miao ZJ, Huang F (2008) Sens Actuators B 132:67–73CrossRefGoogle Scholar
  38. 38.
    Ryoo R, Joo SH, Kruk M, Jaroniec M (2001) Adv Mater 13:677–681CrossRefGoogle Scholar
  39. 39.
    Wu HB, Chen JS, Lou XW, Hng HH (2011) J Phys Chem C 115:24605–24610CrossRefGoogle Scholar
  40. 40.
    Torchynska TV, Hernandez AV, Cano AD, Sandoval SJ, Ostapenko S, Mynbaeva M (2005) J Appl Phys 97:33507CrossRefGoogle Scholar
  41. 41.
    Xu J, Li YS, Huang HT, Zhu YG, Wang ZR, Xie Z, Wang XF, Chen D, Shen GZ (2011) J Mater Chem 21:19086–19092CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Key Laboratory of Photonic and Electronic Band Gap Materials, Ministry of Education, College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbinPeople’s Republic of China

Personalised recommendations