Journal of Sol-Gel Science and Technology

, Volume 67, Issue 3, pp 527–533 | Cite as

Preparation and nonlinear optical properties of Au nanoparticles doped TiO2 thin films

  • Jianzi Li
  • Yanmei Gong
  • Jian Xu
  • Gongping Wang
  • Gang Fang
Original Paper


Nano-sized noble metal nanoparticles doped dielectric composite films with large third-order nonlinear susceptibility due to the confinement and the enhancement of local field were considered to be applied for optical information processing devices, such as optical switch or all optical logical gates. In this paper, sol–gel titania thin films doped with gold nanoparticles (AuNPs, ~10 nm in average size) were prepared. AuNPs were firstly synthesized from HAuCl4 in aqueous solution at ~60 °C, using trisodium citrate as the reducing agent, polyvinylpyrrolidone as the stable agent; then the particle size and optical absorption spectra of the AuNPs in aqueous solutions were characterized by transmitting electron microscopy and UV–Vis–NIR spectrometry. Sol–gel 2AuNPs–100TiO2 (in %mol) thin films (5 layers, ~1 μm in thickness) were deposited on silica glass slides by multilayer dip-coating. After heat-treated at 300–1,000 °C in air, the AuNPs–TiO2 thin films were investigated by X-ray diffraction, scanning electron microscopy and atomic force microscopy. The nonlinear optical properties of the AuNPs–TiO2 thin films were measured with the Z-scan technique, using a femtosecond laser (200 fs) at the wavelength of 800 nm. The third-order nonlinear refractive index and nonlinear absorption coefficient of 2AuNPs–100TiO2 films were at the order of 10−12 cm2/W, and the order of 10−6 cm/W, respectively, and the third-order optical nonlinear susceptibility χ(3) was ~6.88 × 10−10 esu.


Thin films Sol–gel process Nonlinear optical property Gold nanoparticles TiO2 



The authors thank MOST (2006DFA52910), NSFZhejiang (LY12F04001) for the financial support. This work is also sponsored by K.C.Wong Magna Fund in Ningbo University and the graduate student project (G12JA034) of Ningbo University.


  1. 1.
    Almeida RM, Marques AC (2008) Mater Sci Eng B 149:118–122CrossRefGoogle Scholar
  2. 2.
    Almeida RM, Marques AC, Ferrari M (2003) J Sol-Gel Sci Technol 26:891CrossRefGoogle Scholar
  3. 3.
    Yang L, Saavedra SS, Armstrong NR, Hayes J (1994) Anal Chem 66:1254–1263CrossRefGoogle Scholar
  4. 4.
    Zhang LP, Hu B, Wang JH (2012) Anal Chim Acta 717:127–133CrossRefGoogle Scholar
  5. 5.
    Lee M, Kim TS, Choi YS (1997) J Non-Cryst Solids 211:143–149CrossRefGoogle Scholar
  6. 6.
    Chen K, Gu H, Cai Y, Xiong J, Wang A (2009) J Alloys Compd 476:635–638CrossRefGoogle Scholar
  7. 7.
    Ghosh B, Chakraborty P (2011) Nucl Instrum Method B 269:1321–1326CrossRefGoogle Scholar
  8. 8.
    Zhong J, Xiang W, Zhao H, Zhao W, Chen G, Liang X (2012) J Alloys Compd 537:269–274CrossRefGoogle Scholar
  9. 9.
    Kim JS, Lee KS, Kim SS (2006) Thin Solid Films 515:2332–2336CrossRefGoogle Scholar
  10. 10.
    Buso D, Post M, Cantalini C, Mulvaney P, Martucci A (2008) Adv Funct Mater 18:3843–3849CrossRefGoogle Scholar
  11. 11.
    Hossein-Babaei F, Rahbarpour S (2011) Sens Actuators B 160:174–180CrossRefGoogle Scholar
  12. 12.
    Schultz DA (2003) Curr Opin Biotechnol 14:13–22CrossRefGoogle Scholar
  13. 13.
    Radecka M, Gorzkowska-Sobaś A, Zakrzewska K, Sobaś P (2004) Opto-Electron Rev 12:53–56Google Scholar
  14. 14.
    Bahtat A, Bouderbala M, Bouazaoui M, Mugnier J, Druetta M (1998) Thin Solid Films 323:59–62CrossRefGoogle Scholar
  15. 15.
    Conde-Gallardo A, Garcia-Rocha M, Palomino-Merino R, Velasquez-Quesada MP, Hernández-Calderón I (2003) Appl Surf Sci 212–213:583–588CrossRefGoogle Scholar
  16. 16.
    Mignotte C (2004) Appl Surf Sci 226:355–370CrossRefGoogle Scholar
  17. 17.
    Righini GC, Verciani A, Pelli S, Guglielmi M, Martucci A, Fick J, Vitrant G (1996) Pure Appl Opt 5:655–666CrossRefGoogle Scholar
  18. 18.
    Fick J, Martucci A, Guglielmi M, Schell J (2000) Fiber Integr Opt 19:43–56CrossRefGoogle Scholar
  19. 19.
    Long H, Fu M, Li Y, Yang G, Lu P (2010) Thin Solid Films 519:1346–1350CrossRefGoogle Scholar
  20. 20.
    Kyoung M, Lee M (2000) Bull Korean Chem Soc 21:26–28Google Scholar
  21. 21.
    Jun HS, Lee K, Yoon S, Lee TS, Kim IH, Jeong JH, Cheong B, Kim DS, Cho KM, Kim WM (2006) Phys Stat Sol A 203:1211–1216CrossRefGoogle Scholar
  22. 22.
    Tanahashi I, Mito A (2011) Jpn J Appl Phys 50:105001CrossRefGoogle Scholar
  23. 23.
    Adhyapak PV, Singh N, Vijayan A, Aiyer RC, Khanna PK (2007) Mater Lett 61:6–9CrossRefGoogle Scholar
  24. 24.
    Karthikeyan B, Anija M, Philip R (2006) Appl Phys Lett 88:053104CrossRefGoogle Scholar
  25. 25.
    Ismail AA, Bahnemann DW, Wark M (2009) J Phys Chem C 113:7429–7435CrossRefGoogle Scholar
  26. 26.
    Fu P, Zhang P (2011) Thin Solid Films 519:3480–3486CrossRefGoogle Scholar
  27. 27.
    Chandran AR, Pal S, Medda SK, De G (2012) Sci Adv Mater 4:663–668CrossRefGoogle Scholar
  28. 28.
    Manivannan S, Ramaraj R (2012) Chem Eng J 210:195–202CrossRefGoogle Scholar
  29. 29.
    Tseng KH, Huang JC, Liao CY, Tien DC, Tsung TT (2009) J Alloys Compd 472:446–450CrossRefGoogle Scholar
  30. 30.
    Liu YC, Lin LH, Chiu WH (2004) J Phys Chem B 108:19237–19240CrossRefGoogle Scholar
  31. 31.
    Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Small 3:1941–1949CrossRefGoogle Scholar
  32. 32.
    Peng S, Lee Y, Wang C, Yin H, Dai S, Sun S (2008) Nano Res 1:229–234CrossRefGoogle Scholar
  33. 33.
    Lung JK, Huang JC, Tien DC, Liao CY, Tseng KH, Tsung TT, Kao WS, Tsai TH, Jwo CS, Lin HM, Stobinski L (2007) J Alloys Compd 434–435:655–658CrossRefGoogle Scholar
  34. 34.
    Enüstün BV, Turkevich J (1963) J Am Chem Soc 85:3317–3328CrossRefGoogle Scholar
  35. 35.
    Buso D, Pacifico J, Martucci A, Mulvaney P (2007) Adv Funct Mater 17:347–354CrossRefGoogle Scholar
  36. 36.
    Karaagac H, Yengel E, Islam MS (2012) J Alloys Compd 521:155–162CrossRefGoogle Scholar
  37. 37.
    Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G (2008) Nanotechnology 19:145605CrossRefGoogle Scholar
  38. 38.
    Sanchez E, Lopez T, Gomez R (1996) J Solid State Chem 122:309–314CrossRefGoogle Scholar
  39. 39.
    Xu G (2005) Introduction of nanotechnology (in Chinese). Higher Education Press, BeijingGoogle Scholar
  40. 40.
    Bohren CF, Huffman DF (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  41. 41.
    Sheik-Bahae M, Said AA, Wei TH, Hagan DJ, Van Stryland EW (1990) IEEE J Quantum Electron 26:760–769CrossRefGoogle Scholar
  42. 42.
    Long H, Yang G, Chen A, Li Y, Lu P (2009) Opt Commun 282:1815–1818CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jianzi Li
    • 1
  • Yanmei Gong
    • 1
  • Jian Xu
    • 1
  • Gongping Wang
    • 2
  • Gang Fang
    • 1
  1. 1.College of Information Science and EngineeringNingbo UniversityNingboChina
  2. 2.Zhejiang Vocational Academy of ArtHangzhouChina

Personalised recommendations