Skip to main content
Log in

Synthesis of silica–titania composite oxide via “green” aqueous peroxo-route

  • Brief Communication
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The preparation procedure of silica–titania composite oxide using novel solution/sol single precursor containing titanium peroxocomplex and silicic acid has been described. Pechini-type sol–gel process has been used to prepare oxides from the aqueous precursor. Some structural, morphological and textural characteristics of the prepared material have been presented. Composite SiO2/TiO2 has high surface area (c.a. 300 m2/g), and it is composed of anatase nanoparticles with the mean diameter of 5 nm embedded in amorphous silica, then TiO2 prepared via similar method is presented as a mixture of anatase and rutile phases. The proposed synthetic procedure meets the requirements of “green chemistry”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MRJ (2004) Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. J Phys Chem B 108:17269–17273

    Article  CAS  Google Scholar 

  2. Tojo S, Tachikawa T, Fujitsuka M, Majima T (2008) Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism. J Phys Chem C 112:14948–14954

    Article  CAS  Google Scholar 

  3. Yuranova T, Mosteo R, Bandara J, Laub D, Kiwi J (2006) Self-cleaning cotton textiles cotton textiles modified by photo-active SiO2/TiO2 coating. J Molec Catal A 244:160–167

    Article  CAS  Google Scholar 

  4. Chen X, Wang X, Fu X (2009) Hierarchical macro/mesoporous TiO2/SiO2 and TiO2/ZrO2 nanocomposites for environmental photocatalysis. Energy Environ Sci 2:872–877

    Article  CAS  Google Scholar 

  5. Mathltig B, Gutmann E, Meyer DC (2011) Solvothermal preparation of nanocrystalline anatase containing TiO2 and TiO2/SiO2 coating agents for application of photocatalytic treatments. Mater Chem Phys 127:285–291

    Article  Google Scholar 

  6. Jafry HR, Liga MV, Li Q, Barron AR (2011) Simple route to enhanced photocatalytic activity of P25 titanium dioxide nanoparticles by silica addition. Environ Sci Technol 45:1563–1568

    Article  CAS  Google Scholar 

  7. Davis RJ, Liu Z (1997) Titania–silica: a model binary oxide catalyst system. Chem Mater 9:2311–2324

    Article  CAS  Google Scholar 

  8. Kakihana M, Kobayashi M, Tomita K, Petrykin V (2010) Application of water-soluble titanium complexes as precursors for synthesis of titanium-containing oxides via aqueous solution processes. Bull Chem Soc Jpn 83:1285–1308

    Article  CAS  Google Scholar 

  9. Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M (2006) A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew Chem 188:2438–2441

    Article  Google Scholar 

  10. Nag M, Ghosh S, Rana RK, Manorama SV (2010) Controlling phase, crystallinity, and morphology of titania nanoparticles with peroxotitanium complex: experimental and theoretical insights. J Phys Chem Lett 1:2881–2885

    Article  CAS  Google Scholar 

  11. Tsuymoto I, Kobayashi M, Are T, Yamazaki N (2010) Nanosized tetragonal BaTiO3 powders synthesized by a new peroxo-precursor decomposition method. Chem Mater 22:3015–3020

    Article  Google Scholar 

  12. Tang S, Deng Y, Zhan SZ (2011) Chloro-free route to mixed-metal oxides. Synthesis of lead titanate nanoparticles from a single-source precursor route. J Therm Anal Calorim 104:653–659

    Article  CAS  Google Scholar 

  13. Vásquez GC, Peche-Herrero MA, Maestre D, Cremades A, Ramírez-Castellanos J, González-Calbet JM, Piqueras J (2013) Effects of transition metal doping on the growth and properties of rutile TiO2 nanoparticles. J Phys Chem C 117:1941–1947

    Article  Google Scholar 

  14. Zhang M, Shi L, Yuan S, Zhao Y, Fang J (2009) Synthesis and photocatalytic properties of highly stable and neutral TiO2/SiO2 hydrosol. J Colloid Interface Sci 330:113–118

    Article  CAS  Google Scholar 

  15. Truijen I, Hardy A, Van Bael MK, Van den Rul H, Mullens J (2007) Study of the decomposition of aqueous citratoperoxo-Ti(IV)-gel precursors for titania by means of TG-MS and FTIR. Thermochim Acta 456:38–47

    Article  CAS  Google Scholar 

  16. Kobayashi M, Petrykin V, Tomita K, Kakihana M (2011) Hydrothermal synthesis of brookite-type titanium dioxide with snowflake-like nanostructures using water-soluble citratoperoxotitanate complex. J Cryst Growth 337:30–37

    Article  CAS  Google Scholar 

  17. Ennaoui A, Sankapal BR, Skryshevsky V, Lux-Steiner MCh (2006) TiO2 and TiO2–SiO2 thin films and powders by one-step soft-solution method: synthesis and characterizations. Solar Energy Mater Solar Cell 90:1533–1541

    Article  CAS  Google Scholar 

  18. Vayssilov GN (1997) Structural and physicochemical features of titanium silicalites. Catal Rev Sci Eng 39:209–251

    Article  CAS  Google Scholar 

  19. Etacheri V, Seery MK, Hinder SJ, Pillai SC (2011) Oxygen rich titania: a dopant free, high temperature stable, and visible-light active anatase photocatalyst. Adv Funct Mater 21:3744–3752

    Article  CAS  Google Scholar 

  20. Krivtsov IV, Ilkaeva MV, Avdin VV, Zherebtsov DA (2013) Properties and segregation stability of the composite silica-zirconia xerogels prepared via “acidic” and “basic” precipitation routes. J Non-Cryst Solids 362:95–100

    Article  CAS  Google Scholar 

  21. Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non-Cryst Solids 316:309–319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study is carried out within the Federal Goal-oriented Program “Scientific and scientific pedagogical personnel of innovative Russia” for 2009–2013, Gov. contract No. 14.132.21.1449, and a grant of Russian Ministry of Education No. 01201255647. Oviedo University team thanks the financial support from FEDER and MINECO (MAT2010-15094). For the thoughtful remarks made on the study and a fruitful discussion the authors express their gratitude to Svetlana Gryn’ from Kiev Institute of Physical Chemistry and Sergey Alekseev from Kiev Taras Shevchenko National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Krivtsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krivtsov, I.V., Ilkaeva, M.V., Samokhina, V.D. et al. Synthesis of silica–titania composite oxide via “green” aqueous peroxo-route. J Sol-Gel Sci Technol 67, 665–669 (2013). https://doi.org/10.1007/s10971-013-3097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-3097-3

Keywords

Navigation