Journal of Sol-Gel Science and Technology

, Volume 66, Issue 3, pp 363–371 | Cite as

Surface structure and reactivity study of phosphotungstic acid-nitrogenated ormosils

  • Elias P. Ferreira-Neto
  • Flavio L. S. de Carvalho
  • Sajjad Ullah
  • Vinicius C. Zoldan
  • André A. Pasa
  • Adriano Lopes de Souza
  • Liliane C. Battirola
  • Petra Rudolf
  • Sara Aldabe Bilmes
  • Ubirajara P. Rodrigues-Filho
Article

Abstract

Supramolecular interactions between nitrogenated groups in hybrid ormosils bearing phosphotungstate nanocatalyst were used to tune the photocatalytical activity of these class-II hybrid materials obtained through sol–gel chemistry. Surface chemistry and morphology of the materials was studied by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and water contact angle measurements. The photocatalytic efficiency of these hybrid films, measured by the degradation of crystal violet over-layer deposited on ormosils films, is higher for ormosils bearing neutral, more polar and less H-bonding nitrile groups than those bearing alkylamine/alkylammonium functionalities, despite the lower W/Si atomic ratio on the surface and lower tungsten percentage of the pure nitrile bearing ormosils. Such higher surface reactivity of the nitrile bearing ormosils is due to weaker interaction with the phosphotungstate and the lower activity of amine bearing ormosils is attributed to the competition among reversible photochromism and photocatalysis pathways in these materials.

Keywords

Ormosil Hybrid materials Phosphotungstic acid XPS Photocatalysis Supramolecular chemistry 

Notes

Acknowledgments

Part of this work was performed within the exchange program of the Instituto de Química de São Carlos, Universidade de São Paulo and the Faculty of Mathematics and Natural Sciences of the University of Groningen. The authors acknowledge the Panalytical Brazil for XRF measurements. We acknowledge the funding by the São Paulo Research Foundation (FAPESP) Grant # 2011/08120-0 and the National Council for Scientific and Technological Development (CNPq) Grant # 479748/2008-0. F.L.S. de Carvalho and E. P. Ferreira Neto thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for Brazilian studentships; L.C. Battirola thanks CAPES Grant # 5321-09-3 for the international exchange fellowship Brazil/The Netherlands. S. Ullah thanks the Third World Academy of Science (TWAS) and the National Council for Scientific and Technological Development (CNPq, Brazil) for Ph.D fellowship.

Supplementary material

10971_2013_3018_MOESM1_ESM.doc (4.5 mb)
Supplementary material 1 (DOC 4574 kb)

References

  1. 1.
    Pénard AL, Gacoin T, Boilot JP (2007) Acc Chem Res 40:895–902CrossRefGoogle Scholar
  2. 2.
    Orel B, Groselj N, Krasovec UO, Jese R, Georg A (2002) J Sol-Gel Sci Technol 24:5–22CrossRefGoogle Scholar
  3. 3.
    Surca Vuk A, Fir M, Jese R, Vilcnik A, Orel B (2008) Progr Org Coat 63:123–132CrossRefGoogle Scholar
  4. 4.
    Mosa J, Durán A, Aparicio M (2010) J Membr Sci 361:135–142CrossRefGoogle Scholar
  5. 5.
    Sanchez C, Julian B, Belleville P, Popall M (2005) J Mater Chem 15:3559–3592CrossRefGoogle Scholar
  6. 6.
    Etienne P, Denape J, Paris JY, Phalippou J, Sempere R (1996) J Sol-Gel Sci Technol 6:287–297CrossRefGoogle Scholar
  7. 7.
    Kim DH, Moon JH, Lee DW, Shul YG (2003) J Sol-Gel Sci Technol 26:403–406CrossRefGoogle Scholar
  8. 8.
    Hiskia A, Mylonas A, Papaconstantinou E (2001) Chem Soc Rev 30:62–69CrossRefGoogle Scholar
  9. 9.
    Yamase T (1998) Chem Rev 98:307–326CrossRefGoogle Scholar
  10. 10.
    Sakka S (2005) Handbook of sol-gel science and technology: processing, characterization and applications. Vol. 1–3 Springer, New YorkGoogle Scholar
  11. 11.
    Judeinstein P, Schmidt H (1994) J Sol-Gel Sci Technol 3:189–197CrossRefGoogle Scholar
  12. 12.
    Kukovecz Á, Balogi Zs, Kónya Z, Toba M, Lentz P, Niwa SI, Mizukami S, Molnár Á, Nagy JB, Kiricsi I (2002) App Catal A: General 228:83–94CrossRefGoogle Scholar
  13. 13.
    Souza AL, Marques LA, Eberlin MN, Nascente PAP Jr, Leite FL, Rodrigues-Filho UP (2012) Thin Solid Films 520:3574–3580CrossRefGoogle Scholar
  14. 14.
    Zhang XE, Wu WJ, Wang JF, Liu CL, Qian SW (2008) J Mater Res 23:18–26CrossRefGoogle Scholar
  15. 15.
    Huang Y, Pan QY, Dong XW, Cheng ZX (2006) Mat Chem Phys 97:431–436CrossRefGoogle Scholar
  16. 16.
    De Oliveira M Jr, de Souza AL, Schneider J, Rodrigues-Filho UP (2011) Chem Mater 23:953–963CrossRefGoogle Scholar
  17. 17.
    Subnis RW (2008) Hand-book of acid-base indicators. CRC Press, Boca Raton, pp 108–110Google Scholar
  18. 18.
    Subnis RW (2010) Handbook of biological dyes and stains: synthesis and industrial applications, John Wiley and Sons, New Jersy, pp–116Google Scholar
  19. 19.
    Donley C, Dunphy D, Paine D, Carter C, Nebesny K, Lee P, Alloway D, Armstrong NR (2002) Langmuir 18:450–457CrossRefGoogle Scholar
  20. 20.
    Nellis BA, Satcher JH, Risbud SH (2011) Acta Biomater 7:380–386CrossRefGoogle Scholar
  21. 21.
    Kobayashi J, Kawaguchi K, Kawashima T (2004) J Am Chem Soc 126:16318–16319CrossRefGoogle Scholar
  22. 22.
    Eaton P, Holmes P, Yarwood J (2001) J Appl Polym Sci 82:2016–2026CrossRefGoogle Scholar
  23. 23.
    Williams JM, Peterson SW, Brown GM (1968) Inorg Chem 7:2577–2582CrossRefGoogle Scholar
  24. 24.
    Drago RS, Dias JA, Maier TO (1997) J Am Chem Soc 119:7702–7710CrossRefGoogle Scholar
  25. 25.
    NIST X-ray photoelectron spectroscopy database, Version 3.5 (National Institute of Standards and Technology, Gaithersburg, 2003); http://srdata.nist.gov/xps/
  26. 26.
    Oliveira FC, Schneider JF, Siervo A, Landers R, Plepis AMG, Pireaux JJ, Rodrigues-Filho UP (2002) Surf Interface Anal 34:580–582CrossRefGoogle Scholar
  27. 27.
    Atanacio AJ, Latella BA, Barbe CJ, Swain MV (2005) Surf Coat Technol 192:354–364CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Elias P. Ferreira-Neto
    • 1
  • Flavio L. S. de Carvalho
    • 1
  • Sajjad Ullah
    • 1
  • Vinicius C. Zoldan
    • 2
  • André A. Pasa
    • 2
  • Adriano Lopes de Souza
    • 1
  • Liliane C. Battirola
    • 1
    • 3
  • Petra Rudolf
    • 3
  • Sara Aldabe Bilmes
    • 4
  • Ubirajara P. Rodrigues-Filho
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Laboratório de Filmes Finos e Superfícies, Departamento de FísicaUniversidade Federal de Santa CatarinaFlorianópolisBrazil
  3. 3.Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenThe Netherlands
  4. 4.Instituto de Química Física de los Materiales, Facultad Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Medio Ambiente y Energía—INQUIMAE, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations