Advertisement

Journal of Sol-Gel Science and Technology

, Volume 68, Issue 3, pp 447–454 | Cite as

Urease adsorption and activity on magnetite nanoparticles functionalized with monofunctional and bifunctional surface layers

  • Roman P. Pogorilyi
  • Inna V. MelnykEmail author
  • Yuriy L. ZubEmail author
  • Guliam A. Seisenbaeva
  • Vadim G. Kessler
  • Mykola M. Shcherbatyik
  • Aljoša Košak
  • Aleksandra Lobnik
Original Paper

Abstract

The surface of magnetite nanoparticles was coated with functional polysiloxane layers using reaction of hydrolytic copolycondensation of tetraethoxysilane and 3-aminopropyltriethoxysilane (or N-[3-trimethoxysilylpropyl]ethylendiamine), and also that of tetraethoxysilane, 3-aminopropyltriethoxysilane and methyltriethoxysilane (or n-propyltriethoxysilane). It was shown that these functionalized magnetically controllable particles (about 60–150 nm in size as aggregates), as opposed to magnetite, adsorb urease well from aqueous solutions (up to 1 g/g), and that the level of residual activity of adsorbed layers is up to 84 % in the case of a bifunctional sample. It was established that the activity of immobilized urease is normally gradually reduced during storage of the samples, but in the case of ethylenediamine functional group is not decreased for 45 days. The synthesized samples are promising for use as magnetically directed biocatalysts.

Keywords

Hydrolytic polycondensation reaction Magnetite Aminogroups surface layer Urease Adsorption Activity 

Notes

Acknowledgments

R. P. P., I. V. M. and Yu. L. Z. would like to thank the State Target Scientific and Technical Program “Nanotechnologies and Nanomaterials” (project 6.22.5.42) and TCPFR “Fundamental Problems of Nanostructural Systems, Nanomaterials, and Nanotechnologies” (project no. 57/12-H) of NAS of Ukraine. V. G. K. and G. A. S. express their gratitude to the Swedish Research Council for support of the project “Molecular Precursors and Molecular Models of Nanoporous Materials” and to the EU FP7 program for support of the EuRARE project.

References

  1. 1.
    Eltekova NA, Eltekov AY (2000) Sieve effect at the adsorption of albumin and gamma globulin. Russ J Phys Chem 74:1075–1079 (in Russian)Google Scholar
  2. 2.
    Van der Veen M, Cohen Stuart M, Norde W (2007) Spreading of proteins and its effect on adsorption and desorption kinetics. Colloids Surf B Biointerfaces 54:136–142CrossRefGoogle Scholar
  3. 3.
    Hofs B, Brzozowska A, de Keizer A et al (2008) Reduction of protein adsorption to a solid surface by a coating composed of polymeric micelles with a glass-like core. J Colloid Interface Sci 325:309–315CrossRefGoogle Scholar
  4. 4.
    Tsapikouni ThS, Missirlis YF (2008) Protein-material interactions: from micro-to-nano scale. Mat Sci Eng B 152:2–7CrossRefGoogle Scholar
  5. 5.
    Reichelt S, Eichhorn KJ, Aulich D et al (2009) Functionalization of solid surfaces with hyperbranched polyesters to control protein adsorption. Colloids Surf B Biointerfaces 69:169–177CrossRefGoogle Scholar
  6. 6.
    Braun S, Rappoport S, Zusman R, Avnir D (1990) Ottolenghi M. Biochemically active sol–gel glasses. The trapping of enzymes. Mater Lett 10:1–8CrossRefGoogle Scholar
  7. 7.
    Brinker CJ, Sheerer GW (1990) Sol–gel science. The physics and chemistry of sol–gel processing. Academic Press, San DiegoGoogle Scholar
  8. 8.
    Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106CrossRefGoogle Scholar
  9. 9.
    Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley, New YorkGoogle Scholar
  10. 10.
    Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol–gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  11. 11.
    Coradin T, Boissiere M, Livage J (2006) Sol–gel chemistry in medicinal science. Curr Med Chem 13:99–108CrossRefGoogle Scholar
  12. 12.
    Pogorilyi RP, Goncharyk VP, Yurchenko GR et al (2005) Immobilization of urease on functionalized polisyloxane xerogels and hydrogels obtained by sol–gel method. Quest Chem Chem Technol 6:103–106 (in Ukraininan)Google Scholar
  13. 13.
    Takahashi H, Li B, Sasaki T, Miyazaki C, Kajino T, Inagaki S (2001) Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent. Microporous Mesoporous Mater 44–45:755–762CrossRefGoogle Scholar
  14. 14.
    Pimentel MCB, Leao ABF, Melo EHM, Ledingham WM, Lima-Filho JL, Sivewright M, Kennedy JF (2007) Artificial cells. Blood Substit Biotechnol 35:221–235CrossRefGoogle Scholar
  15. 15.
    Bayramoglu G, Arıca MY (2008) Preparation of poly(glycidylmethacrylate–methylmethacrylate) magnetic beads: application in lipase immobilization. J Mol Catal B Enzym 55:76–83CrossRefGoogle Scholar
  16. 16.
    Ma Z, Guan Y, Liu H (2006) Superparamagnetic silica nanoparticles with immobilized metal affinity ligands for protein adsorption. J Magn Magn Mat 301:469–477CrossRefGoogle Scholar
  17. 17.
    Melnik IV, Zub YuL, Alonso B, Abramov NV, Gorbik PP (2012) Creating of a functional polysiloxane layer on the surface of magnetic nanoparticles using sol–gel method. Glass Phys Chem 38:96–104CrossRefGoogle Scholar
  18. 18.
    Melnyk IV, Zub YL (2012) Preparation and characterisation of magnetic nanoparticles with bifunctional surface layer ≡ Si(CH2)3NH2/≡ SiCH3 (or ≡ SiC3H7–n). Microporous Mesoporous Mater 154:196–199CrossRefGoogle Scholar
  19. 19.
    Brunauer JS, Emmet PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  20. 20.
    Lurie YY (1984) Analytical chemistry of industrial wastewater. Chemistry, Moscow (in Russian)Google Scholar
  21. 21.
    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinium. J Am Chem Soc 40:1361–1403CrossRefGoogle Scholar
  22. 22.
    Finn L, Slinyakova I (1975) The structure and thermal decomposition of the organopolysiloxane xerogels shown by IR spectroscopy. Colloid J 37:723–729 (in Russian)Google Scholar
  23. 23.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, LondonGoogle Scholar
  24. 24.
    Giles CH, MacEwan TH, Nakhwa SN et al (1960) A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 10:3973–3993CrossRefGoogle Scholar
  25. 25.
    Bosker WTE, Iakovlev PA, Norde W, Cohen Stuart M (2005) BSA adsorption on bimodal PEO brushes. J Colloid Interface Sci 286:496–503CrossRefGoogle Scholar
  26. 26.
    Pogorilyi RP, Goncharyk VP, Kozhara LI, Zub YL (2009) The influence on the activity of the adsorbed urease of structural and adsorption characteristics of polisyloxane matrices containing surface layer with 3-aminopropyl groups. Surface 1(16):35–45 (in Ukrainian)Google Scholar
  27. 27.
    Pogorilyi RP, Goncharyk VP, Kozhara LI, Zub YuL (2008) Covalent immobilization of urease on polysiloxane matrices containing 3-aminopropyl and 3-mercaptopropyl groups. Appl Biochem Microbiol 44:621–625 (in Russian)CrossRefGoogle Scholar
  28. 28.
    Pogorilyi RP, Honcharyk VP, Melnyk IV, Zub YuL (2008) In: Innocenzi P, Zub Yu, Kessler V (eds) Sol–gel methods for materials processing, XII. Springer, DordrechtGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Roman P. Pogorilyi
    • 1
  • Inna V. Melnyk
    • 1
    Email author
  • Yuriy L. Zub
    • 1
    Email author
  • Guliam A. Seisenbaeva
    • 2
  • Vadim G. Kessler
    • 2
  • Mykola M. Shcherbatyik
    • 3
  • Aljoša Košak
    • 4
  • Aleksandra Lobnik
    • 4
  1. 1.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Deparment of ChemistrySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Kholodnyi Institute of BotanyNational Academy of Sciences of UkraineKyivUkraine
  4. 4.Faculty of Mechanical Engineering, Centre for Sensor TechnologyUniversity of MariborMariborSlovenia

Personalised recommendations