Advertisement

Journal of Sol-Gel Science and Technology

, Volume 66, Issue 1, pp 73–83 | Cite as

Hybrid polymer sol–gel material for UV-nanoimprint: microstructure and thermal densification

  • Franziska BackEmail author
  • Matthias Bockmeyer
  • Eveline Rudigier-Voigt
  • Peer Löbmann
Original Paper

Abstract

Hybrid polymer solutions suitable for UV-nanoimprint were synthesized by combination of an alkoxysilane binder mixture with silica nanoparticles. Hydrolysis and condensation reactions were monitored by NMR and viscosity measurements. Thereby long-term stable systems were produced as a prerequisite for industrial application. Dip-coating of glass substrates and subsequent UV-curing yielded thin films. Their thermal densification and microstructural evolution resulted in pure glassy porous coatings, which were in detail characterized by N2-sorption measurements and ellipsometric porosimetry. Results emphasize the importance of the binder-particle interaction within these materials that are destined for the fabrication of microstructured surfaces by cost efficient and industrially feasible UV-based soft lithography. Structured glassy layers with high inorganic content show thermal stability up to >500 °C and have a high structure accuracy >85 %.

Keywords

Hybrid material Microstructure UV-based nanoimprint lithography Industrial application Educational model for densification of hybrid polymer nanopatterned sol–gel coatings Ellipsometric porosimetry 

Notes

Acknowledgments

This work was funded by the SCHOTT foundation. The authors would like to thank T. Sweeck, A. Schmitt and C. Stolz for experimental support and performing measurements. We thank Fraunhofer ISE for kind support with the master structures.

References

  1. 1.
    Yoldas B, Partlow P (1985) Thin Solid Films 129:1–14CrossRefGoogle Scholar
  2. 2.
    Gombert A, Glaubitt W (2000) Sol Energy 68:357–360CrossRefGoogle Scholar
  3. 3.
    Hussmann E (1998) Key Eng Mater 150:49–66CrossRefGoogle Scholar
  4. 4.
    Löbmann P, Röhlen PJ (2003) Sci-Tech Glass 76:1–7Google Scholar
  5. 5.
    Glaubitt W, Löbmann PJ (2011) Sol-Gel Sci Technol 59:239–244CrossRefGoogle Scholar
  6. 6.
    Aslan M, Oral A, Demirci E, Basaran E (2004) Key Eng Mater 264–268:443–446CrossRefGoogle Scholar
  7. 7.
    Debeda-Hickel H, Lucat C, Menil FJ (2005) Eur Ceram Soc 25:2115–2119CrossRefGoogle Scholar
  8. 8.
    Prodi-Schwab A, Luethge T, Jahn R, Herbig B, Loebmann PJ (2008) Sol-Gel Sci Technol 47:68–73CrossRefGoogle Scholar
  9. 9.
    Löbmann P, Seifert S, Merklein S, Sporn DJ (1998) Sol-Gel Sci Technol 13:827–831CrossRefGoogle Scholar
  10. 10.
    Herrmann J, Löbmann P (2001) In: Proceedings of the 19th international congress on glass, Edinburgh, United Kingdom, pp 654–655Google Scholar
  11. 11.
    Schottner G (2001) Chem Mater 13:3422–3443CrossRefGoogle Scholar
  12. 12.
    Schottner G, Rose K, Posset UJ (2003) Sol-Gel Sci Technol 27(1):71–79CrossRefGoogle Scholar
  13. 13.
    Chen X, Zhou S, You B (2011) J Sol-Gel Sci Technol 58:490–500CrossRefGoogle Scholar
  14. 14.
    Kim Korean S (2008) J Chem Eng Data 25:1195–1200Google Scholar
  15. 15.
    Vasko K, Noller K, Mikula M, Amberg-Schwab S, Weber U (2009) Cent Eur J Phys 7(2):371–378CrossRefGoogle Scholar
  16. 16.
    Kron J, Deichmann K, Rose K (2011) Eur Fed Corr Pub 58:105–118Google Scholar
  17. 17.
    Kron J, Schottner G, Deichmann K (2001) Thin Solid Films 392(2):236–242CrossRefGoogle Scholar
  18. 18.
    Isnin A, Zainuddin MT, Aziz NA, Malek MZJ (2008) Korean Phys Soc 52:1554–1557CrossRefGoogle Scholar
  19. 19.
    Kim W, Yoon K, Bae BJ (2005) Mater Chem 15:4535–4539CrossRefGoogle Scholar
  20. 20.
    Letailleur A, Teisseire J, Chemin N, Barthel E, Sondergard E (2010) Chem Mater 22:3143–3151CrossRefGoogle Scholar
  21. 21.
    Letailleur A, Nomenyo K, McMurtry S, Barthel E, Sondergard E, Lerondel GJ (2011) Appl Phys 109:16104–16107CrossRefGoogle Scholar
  22. 22.
    Schiavone P, Chaix N, Li Q, Eftekhar A, Yegnanarayanan S, Adibi A (2010) Conference on Lasers and Electro-Optics, San JoseGoogle Scholar
  23. 23.
    Bender M, Otto M, Vratzov B, Spengenberg B, Kurz H (2000) Microelectron Eng 53:233–236CrossRefGoogle Scholar
  24. 24.
    Chiappini A, Chiasera A, Berneschi S, Armellini C, Carpentiero A, Mazzola M, Moser E, Varas S, Righini C, Ferrari MJ (2011) Sol-Gel Sci Technol 60:408–425CrossRefGoogle Scholar
  25. 25.
    Gong J, Lipomi D, Deng J, Nie Z, Chen X, Randall N, Nair R, Whitesides G (2010) Nano Lett 10:2702–2708CrossRefGoogle Scholar
  26. 26.
    Gvishi R, Sturm G, Englander AJ (2011) Eur Opt Soc Rap Public 7:12002–12009CrossRefGoogle Scholar
  27. 27.
    Haisma J, Verheijen M, Heuvel K, Berg J (1996) Vac Sci Technol B 24:4124–4129Google Scholar
  28. 28.
    Zhang X, Que W, Jia C, Hu J, Liu WJ (2011) Sol-Gel Sci Technol 60:71–80CrossRefGoogle Scholar
  29. 29.
    Austin M, Ge H, Wu W, Li M, Yu Z, Wassermann D, Lyon S, Chou S (2004) Appl Phys Lett 84:5299–5302CrossRefGoogle Scholar
  30. 30.
    Li Z, Gu Y, Wang L, Ge H, Wu W, Xia Q, Yuan C, Chen Y, Cui B, Williams R (2009) Am Chem Soc 9:2306–2310Google Scholar
  31. 31.
    Peroz C, Heitz C, Goletto V, Barthel E, Sondergard E (2007) J Vac Sci Technol B 25:L 27–L 30Google Scholar
  32. 32.
    Peroz C, Chauveau V, Barthel E, Sondergard E (2009) Adv Mater 21:1–6CrossRefGoogle Scholar
  33. 33.
    Shan X, Ling S, Maw H, Lu C, Lam Y (2008) Dans symposium on design, test, integration and packaging of MEMS/MOEMS, vol 1, pp 1–5Google Scholar
  34. 34.
    Saison T, Perz C, Chauveau V, Berthier S, Sondergard E, Arribart E (2008) Bioinspir Biomim 3:1–3CrossRefGoogle Scholar
  35. 35.
    Worgull M, Heckele M, Mappes T, Matthis B, Tosello G, Metz T, Gavillet J, Koltay P, Hansen H (2008) Dans symposium on design, test, integration and packaging of MEMS/MOEMS, vol 1, pp 15–18Google Scholar
  36. 36.
    Scherer GJ (1997) Sol-Gel Sci Technol 8:353Google Scholar
  37. 37.
    Gallardo J, Galliano P, Duran AJ (2000) Sol-Gel Sci Technol 19:393–397CrossRefGoogle Scholar
  38. 38.
    Bockmeyer M, Löbmann P (2006) Chem Mater 18:4478–4485CrossRefGoogle Scholar
  39. 39.
    Bockmeyer M, Löbmann P (2007) Thin Solid Films 515:5212–5219CrossRefGoogle Scholar
  40. 40.
    Kim W, Kim K, Kim Y, Bae B (2005) Thin Solid Films 476:181–184CrossRefGoogle Scholar
  41. 41.
    Becker C, Lockau D, Sontheimer T, Schubert-Bischoff P, Rudigier-Voigt E, Bockmeyer M, Schmidt F, Rech B (2012) Nanotechnology 23:135302–135308CrossRefGoogle Scholar
  42. 42.
    Sontheimer T, Rudigier-Voigt E, Bockmeyer M, Klimm C, Schubert-Bischoff P, Becker C, Rech B (2011) Phys Status Solidi RRL 3:376–378CrossRefGoogle Scholar
  43. 43.
    Sontheimer T, Rudigier-Voigt E, Bockmeyer M, Lockau D, Klimm C, Becker C, Rech B J Non-Cryst Solids (in print)Google Scholar
  44. 44.
    Nagao D, Satoh T, Konno M (2000) J Colloid Interface Sci 232:102–110CrossRefGoogle Scholar
  45. 45.
    Park J, Hah H, Koo S, Lee YJ (2006) Ceram Process Res 7:83–89Google Scholar
  46. 46.
    Bessueille F, Pla-Roca M, Mills CA, Martinez E, Samitier J, Errachid A (2005) Am Chem Soc 21:12060–12063Google Scholar
  47. 47.
    Diez M, Mela P, Seshan V, Möller M, Lensen M (2009) Small 5:2756–2760CrossRefGoogle Scholar
  48. 48.
    Xia Y, Whitesides G (1998) Angew Chem Int Ed 37:550–575CrossRefGoogle Scholar
  49. 49.
    Brinker JC, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press Inc, New York, pp 116–123Google Scholar
  50. 50.
    Metroke TL, Kachurina O, Knobbe E (2002) T Prog Org Coatings 44:295–305CrossRefGoogle Scholar
  51. 51.
    Baklanov M, Mogilnikov K, Polovinkin V, Dultsev FJ (2000) Vac Sci Technol 18:1385–1392Google Scholar
  52. 52.
    Seco A, Goncalves M, Almeida R (2000) Mat Sci Eng B76:193–199Google Scholar
  53. 53.
    Bockmeyer M, Herbig B, Löbmann P (2009) Thin Solid Films 517:1596–1600CrossRefGoogle Scholar
  54. 54.
    Rouessac V, Coustel R, Bosc F, Durand J, Ayral A (2006) Thin Solid Films 495:232–236CrossRefGoogle Scholar
  55. 55.
    Vayert M, Nguyen T, Groso D, Boissiere C, Hillmyer M, Sinturel C (2011) Macromolecules 44:8892–8897CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Franziska Back
    • 1
    • 2
    Email author
  • Matthias Bockmeyer
    • 1
  • Eveline Rudigier-Voigt
    • 1
  • Peer Löbmann
    • 2
  1. 1.Schott AG, Research and Technology DevelopmentMainzGermany
  2. 2.Fraunhofer Institut für Silicatforschung ISCWürzburgGermany

Personalised recommendations