Journal of Sol-Gel Science and Technology

, Volume 65, Issue 2, pp 170–177 | Cite as

Coating functional sol–gel films inside horizontally-rotating cylinders by rimming flow/state

  • Christoph Dawedeit
  • Christopher C. Walton
  • Alexander A. Chernov
  • Sung Ho Kim
  • Marcus A. Worsley
  • Tom Braun
  • Stuart A. Gammon
  • Joe H. Satcher
  • Kuang Jen Wu
  • Alex V. Hamza
  • Juergen Biener
Original Paper

Abstract

The fabrication of uniform sol–gel coatings with embedded functional nanomaterials inside cylinders requires detailed understanding of the gelation behavior. For sol–gel systems the viscosity is a function of gelation time that affects sol–gel coatings on the inside of a slowly, horizontally rotating cylinder. Therefore the angular velocity has to be adjusted to this time dependence. The higher the viscosity the more liquid is dragged along with the moving cylinder wall while the balance of gravity and drag limits the layer thickness. In addition, inertial forces and surface tension can create instabilities within the coated layer. Here, we show that it is important to suppress these instabilities by transitioning the viscous sol directly to a velocity that allows for the formation of an almost uniform layer. In this regime, which is the so-called rimming state, the recirculation of the gel precursor solution is strongly reduced which allows to fabricate coatings with shear sensitive sol–gel chemistries. Here, we tested this approach with 4 different aerogel systems, with low-density CH-based-, TiO2-, SiO2- and Fe2O3-aerogels, that represent a wide variety of different sol–gel behaviors. We show that the required rotational velocities for these aerogel systems can be predicted with a simple analytical approximation, and we performed computational fluid dynamics simulations to predict local shear and thickness uniformity.

Keywords

Sol–gel Rimming flow Aerogel Coating Tube Cylinder 

References

  1. 1.
    Heusing S, Aegerter MA (2012) Sol-gel processing for conventional and alternative energy. In: Aparicio M, Jitianu A, Klein LC (eds) Sol-gel coatings for electrochromic devices. Advances in sol-gel derived materials and technologies. Springer US, pp 239–274. doi:10.1007/978-1-4614-1957-0_12
  2. 2.
    Brinker CJ, Frye GC, Hurd AJ, Ashley CS (1991) Fundamentals of sol-gel dip coating. Thin Solid Films 201(1):97–108. doi:10.1016/0040-6090(91)90158-T CrossRefGoogle Scholar
  3. 3.
    Ghosh SK (2006) Functional coatings and microencapsulation: a general perspective. In: Functional coatings. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 1–28. doi:10.1002/3527608478.ch1
  4. 4.
    Puetz J, Chalvet FN, Aegerter MA (2003) Wet chemical deposition of transparent conducting coatings in glass tubes. Thin Solid Films 442(1–2):53–59. doi:10.1016/S0040-6090(03)00941-6 CrossRefGoogle Scholar
  5. 5.
    Mori T, Toki M, Ikejiri M, Takei M, Aoki M, Uchiyama S, Kanbe S (1988) Silica glass tubes by new sol-gel method. J Non-Cryst Solids 100(1–3):523–525. doi:10.1016/0022-3093(88)90076-2 CrossRefGoogle Scholar
  6. 6.
    Moffatt HK (1977) Behaviour of a viscous film on the outer surface of a rotating cylinder. J de Mecanique 16(5):651–673Google Scholar
  7. 7.
    Lee JK, Gould GL (2007) Polydicyclopentadiene based aerogel: a new insulation material. J Sol-Gel Sci Technol 44(1):29–40. doi:10.1007/s10971-007-1598-7 CrossRefGoogle Scholar
  8. 8.
    Biener J, Dawedeit C, Kim SH, Braun T, Worsley MA, Chernov AA, Walton CC, Willey TM, Kucheyev SO, Shin SJ, Wang YM, Biener MM, Lee JRI, Kozioziemski BJ, Buuren Tv, Wu KJJ, Satcher JH Jr, Hamza AV (2012) A new approach to foam-lined indirect-drive NIF ignition targets. Nucl Fusion 52(6):062001. doi:10.1088/0029-5515/52/6/062001 CrossRefGoogle Scholar
  9. 9.
    Sacks RA, Darling DH (1987) Direct drive cryogenic ICF capsules employing D-T wetted foam. Nucl Fusion 27(3):447–452. doi:10.1088/0029-5515/27/3/009 CrossRefGoogle Scholar
  10. 10.
    Dawedeit C, Kim SH, Braun T, Worsley MA, Letts SA, Wu KJ, Walton CC, Chernov AA, Satcher JH, Hamza AV, Biener J (2012) Tuning the rheological properties of sols for low-density aerogel coating applications. Soft Matter 8(13):3518–3521. doi:10.1039/c2sm07396j CrossRefGoogle Scholar
  11. 11.
    Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342. doi:10.1016/s0022-3093(98)00135-5 CrossRefGoogle Scholar
  12. 12.
    Murray KS (1974) Binuclear oxo-bridged Iron(III) complexes. Coord Chem Rev 12(1):1–35. doi:10.1016/s0010-8545(00)80384-7 CrossRefGoogle Scholar
  13. 13.
    Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline alpha-Fe2O3 by a sol-gel process. Sens Actuators B-Chem 40(2–3):161–165. doi:10.1016/S0925-4005(97)80256-0 CrossRefGoogle Scholar
  14. 14.
    Zhao J, Huggins FE, Feng Z, Lu FL, Shah N, Huffman GP (1993) Structure of a nanophase iron oxide catalyst. J Catal 143(2):499–509. doi:10.1006/jcat.1993.1293 CrossRefGoogle Scholar
  15. 15.
    Wang CT, Willey RJ (1999) Fine particle iron oxide based aerogels for the partial oxidation of methanol. Catal Today 52(1):83–89. doi:10.1016/s0920-5861(99)00065-6 CrossRefGoogle Scholar
  16. 16.
    Negishi N, Iyoda T, Hashimoto K, Fujishima A (1995) Preparation of transparent TiO2 thin film photocatalyst and its photocatalytic Activity. Chem Lett 24(9):841–842. doi:10.1246/cl.1995.841 CrossRefGoogle Scholar
  17. 17.
    Yasumori A, Shinoda H, Kameshima Y, Hayashi S, Okada K (2001) Photocatalytic and photoelectrochemical properties of TiO2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods. J Mater Chem 11(4):1253–1257. doi:10.1039/b100216n CrossRefGoogle Scholar
  18. 18.
    Sopyan I, Murasawa S, Hashimoto K, Fujishima A (1994) Highly efficient TiO2 film photocatalyst—degradation of gaseous acetaldehyde. Chem Lett 4:723–726. doi:10.1246/cl.1994.723 CrossRefGoogle Scholar
  19. 19.
    Fernandez A, Lassaletta G, Jimenez VM, Justo A, GonzalezElipe AR, Herrmann JM, Tahiri H, AitIchou Y (1995) Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification. Appl Catal B-Environ 7(1–2):49–63. doi:10.1016/0926-3373(95)00026-7 CrossRefGoogle Scholar
  20. 20.
    Paz Y, Luo Z, Rabenberg L, Heller A (1995) Photooxidative self-cleaning transparent titanium dioxide films on glass. J Mater Res 10(11):2842–2848. doi:10.1557/jmr.1995.2842 CrossRefGoogle Scholar
  21. 21.
    Watanabe T, Nakajima A, Wang R, Minabe M, Koizumi S, Fujishima A, Hashimoto K (1999) Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351(1–2):260–263. doi:10.1016/s0040-6090(99)00205-9 CrossRefGoogle Scholar
  22. 22.
    Melo F (1993) Localized states in a film-dragging experiment. Phys Rev E 48(4):2704–2712. doi:10.1103/PhysRevE.48.2704 CrossRefGoogle Scholar
  23. 23.
    Seiden G, Thomas PJ (2011) Complexity, segregation, and pattern formation in rotating-drum flows. Rev Mod Phys 83(4):1323–1365. doi:10.1103/RevModPhys.83.1323 CrossRefGoogle Scholar
  24. 24.
    Kim SH, Worsley MA, Valdez CA, Shin SJ, Dawedeit C, Braun T, Baumann TF, Letts SA, Kucheyev SO, Wu J, Biener J, Satcher JH, Hamza AV (2012) Exploration of the versatility of ring opening metathesis polymerization: an approach for gaining access to low density polymeric aerogels. RSC Adv 2(23):8672–8680. doi:10.1039/C2RA21214E CrossRefGoogle Scholar
  25. 25.
    Leventis N, Sotiriou-Leventis C, Mohite DP, Larimore ZJ, Mang JT, Churu G, Lu HB (2011) Polyimide aerogels by ring-opening metathesis polymerization (ROMP). Chem Mat 23(8):2250–2261. doi:10.1021/cm200323e CrossRefGoogle Scholar
  26. 26.
    Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process. J Non-Cryst Solids 145(1–3):44–50. doi:10.1016/s0022-3093(05)80427-2 CrossRefGoogle Scholar
  27. 27.
    Gash AE, Tillotson TM, Satcher JH, Poco JF, Hrubesh LW, Simpson RL (2001) Use of epoxides in the sol-gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Synth Characterization of Titania Aerogels 13(3):999–1007. doi:10.1021/cm0007611 Google Scholar
  28. 28.
    Campbell LK, Na BK, Ko EI (1992) Synthesis and characterization of titania aerogels. Chem Mater 4(6):1329–1333. doi:10.1021/cm00024a037 CrossRefGoogle Scholar
  29. 29.
    Thoroddsen ST, Mahadevan L (1997) Experimental study of coating flows in a partially-filled horizontally rotating cylinder. Exp Fluids 23(1):1–13. doi:10.1007/s003480050080 CrossRefGoogle Scholar
  30. 30.
    Sheng X, Lee JK, Kessler MR (2009) Influence of cross-link density on the properties of ROMP thermosets. Polymer 50(5):1264–1269. doi:10.1016/j.polymer.2009.01.021 CrossRefGoogle Scholar
  31. 31.
    Ashmore J, Hosoi AE, Stone HA (2003) The effect of surface tension on rimming flows in a partially filled rotating cylinder. J Fluid Mech 479:65–98. doi:10.1017/s0022112002003312 CrossRefGoogle Scholar
  32. 32.
    Hosoi AE, Mahadevan L (1999) Axial instability of a free-surface front in a partially filled horizontal rotating cylinder. Phys Fluids 11(1):97–106. doi:10.1063/1.869905 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christoph Dawedeit
    • 1
    • 2
  • Christopher C. Walton
    • 1
  • Alexander A. Chernov
    • 1
  • Sung Ho Kim
    • 1
  • Marcus A. Worsley
    • 1
  • Tom Braun
    • 1
  • Stuart A. Gammon
    • 1
  • Joe H. Satcher
    • 1
  • Kuang Jen Wu
    • 1
  • Alex V. Hamza
    • 1
  • Juergen Biener
    • 1
  1. 1.Nanoscale Synthesis and Characterization LaboratoryLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.NtechTechnische Universität MünchenGarchingGermany

Personalised recommendations