Journal of Sol-Gel Science and Technology

, Volume 65, Issue 2, pp 121–129 | Cite as

Hydrothermally assisted complex polymerization method for barium strontium titanate powder synthesis

  • Jovana Ćirković
  • Katarina Vojisavljević
  • Maja Šćepanović
  • Aleksander Rečnik
  • Goran Branković
  • Zorica Branković
  • Tatjana Srećković
Original Paper


Barium strontium titanate was obtained by hydrothermal treatment of barium strontium titanate citric precursor solution, previously prepared by complex polymerization method. The thermally induced phase evolution was followed at various temperatures up to 800 °C using thermogravimetric and differential thermal analysis, X-ray diffraction analysis, and Raman spectroscopy. Microstructural characterization of barium strontium titanate powders was performed by scanning and transmission electron microscopy. The proposed synthesis route has been proven as a better and faster method for barium strontium titanate powder preparation as compared to the conventional complex polymerization route. The method was found efficient for production of low agglomerated, fine, nanosized barium strontium titanate powder with well defined stoichiometry, and sub-micron particle size. The results of structural and microstructural characterization showed the complete crystallization of carbonate-free barium strontium titanate powder at 700 °C with an average size of crystallites below 50 nm.


Barium strontium titanate Sol–gel processes Hydrothermal synthesis X-ray diffraction Raman spectroscopy Transmission electron microscopy 



This work was financially supported by the Serbian Ministry of Educations, Science and Technological Development through the project No. III45007.


  1. 1.
    Cole MW, Joshi PC, Ervin MH (2001) J Appl Phys 89:6336–6340CrossRefGoogle Scholar
  2. 2.
    Cole MW, Hubbard C, Ngo E, Ervin M, Wood M, Geyer RG (2002) J Appl Phys 92:475–483CrossRefGoogle Scholar
  3. 3.
    Ezhilvalavan S, Tseng TY (2000) Mater Chem Phys 65:227–248CrossRefGoogle Scholar
  4. 4.
    Carlson CM, Rivkin TV, Parilla PA, Perkins JD, Ginley DS, Kozyrev AB, Oschadchy VN, Pavlov AS (2000) Appl Phys Lett 76:1920–1922CrossRefGoogle Scholar
  5. 5.
    Agarwal S, Sharma GL (2002) Sensor Actuat B-Chem 85:205–211CrossRefGoogle Scholar
  6. 6.
    Lahiry S, Mansingh A (2008) Thin Solid Films 516:1656–1662CrossRefGoogle Scholar
  7. 7.
    Mohammed MS, Naik R, Mantese JV, Schubring NW, Micheli AL, Catalan AB (1996) J Mater Res 11:2588–2593CrossRefGoogle Scholar
  8. 8.
    Sharma P K, Varadan VV, Varadan VK (2000) Chem Mater 12:2590–2596Google Scholar
  9. 9.
    Newalkar BL, Komarnerni S, Katsuki H (2001) Mater Res Bull 36:2347–2355CrossRefGoogle Scholar
  10. 10.
    Liou YC, Wu CT (2008) Ceram Int 34:517–522CrossRefGoogle Scholar
  11. 11.
    Pechini MP (1967) US Patent 3330697Google Scholar
  12. 12.
    Ries A, Simões AZ, Cilense M, Zaghete MA, Varela JA (2003) Mater Charact 50:217–221CrossRefGoogle Scholar
  13. 13.
    Miao H, Zhou Y, Tan G, Dong M (2008) J Electroceram 21:553–556CrossRefGoogle Scholar
  14. 14.
    Liu SF, Abothu IR, Komarnerni S (1999) Mater Lett 38:344–350CrossRefGoogle Scholar
  15. 15.
    Deshpande SB, Khollam YB, Bhoraskar SV, Date SK, Sainkar SR, Potdar HS (2005) Mater Lett 59:293–296CrossRefGoogle Scholar
  16. 16.
    Pązik R, Hreniak D, Stręk W (2007) Mater Res Bull 42:1188–1194CrossRefGoogle Scholar
  17. 17.
    Razak KA, Asadov A, Yoo J, Haemmerle E, Gao W (2008) J Alloy Compd 449:19–23CrossRefGoogle Scholar
  18. 18.
    Ianculescu A, Berger D, Viviani M, Ciomaga CE, Mitoseriu L, Vasile E, Dragǎn N, Crişan D (2007) J Eur Ceram Soc 27:3655–3658CrossRefGoogle Scholar
  19. 19.
    Kumar S, Messing GL, White WB (1993) J Am Ceram Soc 76:617–624CrossRefGoogle Scholar
  20. 20.
    Durán P, Capel F, Gutierrez D, Tartaj J, Bañares MA (2001) J Mater Chem 11:1828–1836CrossRefGoogle Scholar
  21. 21.
    Arima M, Kakihana M, Nakamura Y, Yashima M, Yoshimura M (1996) J Am Ceram Soc 79:2847–2856CrossRefGoogle Scholar
  22. 22.
    Durán P, Gutierrez D, Tartaj J, Bañares MA, Moure C (2002) J Eur Ceram Soc 22:797–807CrossRefGoogle Scholar
  23. 23.
    Tangjuank S, Tunkasiri T (2005) Appl Phys A-Mater 81:1105–1107CrossRefGoogle Scholar
  24. 24.
    Mao C, Dong X, Zeng T, Wang G, Chen S (2007) Mater Res Bull 42:1602–1610CrossRefGoogle Scholar
  25. 25.
    Durán P, Capel F, Tartaj J, Gutierrez D, Moure C (2001) Solid State Ionics 141–142:529–539CrossRefGoogle Scholar
  26. 26.
    Wada S, Tsurumi T, Chikamori H, Noma T, Suzuki T (2001) J Cryst Growth 229:433–439CrossRefGoogle Scholar
  27. 27.
    Yu J, Chu J, Zhang M (2002) Appl Phys A 74:645–647CrossRefGoogle Scholar
  28. 28.
    Kuo SY, Liao WY, Hsieh WF (2001) Phys Rev B 64:224103CrossRefGoogle Scholar
  29. 29.
    Deng Z, Dai Y, Chen W, Pei X (2010) J Phys Chem C 114:1748–1751CrossRefGoogle Scholar
  30. 30.
    Dutta PK, Gallagher PK, Twu J (1993) Chem Mater 5:1739–1743CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jovana Ćirković
    • 1
  • Katarina Vojisavljević
    • 1
  • Maja Šćepanović
    • 2
  • Aleksander Rečnik
    • 3
  • Goran Branković
    • 1
  • Zorica Branković
    • 1
  • Tatjana Srećković
    • 1
  1. 1.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia
  2. 2.Center for Solid State Physics and New Materials, Institute of PhysicsUniversity of BelgradeBelgradeSerbia
  3. 3.Department for Nanostructured MaterialsJožef Stefan InsituteLjubljanaSlovenia

Personalised recommendations