Advertisement

Journal of Sol-Gel Science and Technology

, Volume 64, Issue 1, pp 162–169 | Cite as

Synthesis of α-alumina from a less common raw material

  • Aurora López-DelgadoEmail author
  • Laila Fillali
  • Jose A. Jiménez
  • Sol López-Andrés
Original paper

Abstract

A nanostructured α-Al2O3 with particle size lower than 100 nm was obtained from a hazardous waste generated in slag milling process by the aluminium industry. The route developed to synthesize alumina consisted of two steps: in the first one, a precursor of alumina, boehmite, γ-AlOOH was obtained by a sol–gel method. In the second step, the alumina was obtained by calcination of the precursor boehmite (xerogel). Calcination in air was performed at two different temperatures, i.e. 1,300 and 1,400 °C, to determine the influence of this parameter on the quality of resulting alumina. X-Ray diffraction patterns and transmission electron microscopy images of calcined powers revealed beside corundum the presence of transition aluminas and some rest of amorphous phase in the sample prepared at 1,300 °C. The increase of the calcinations temperature to 1,400 °C favors the formation of an almost single-phase corundum powder. The transition of θ- to α-Al2O3 was followed by means of infrared spectroscopy, since it is accompanied by the disappearance of the IR band frequencies associated with tetrahedral sites (AlO4 sites), giving rise to a spectrum dominated by Al3+ ions in octahedral sites (AlO6) characteristic of corundum.

Keywords

Alpha-alumina Boehmite Sol–gel Non-conventional raw material 

Notes

Acknowledgments

The authors thank the company Recuperaciones y Reciclajes Roman S.L. (Fuenlabrada, Madrid, Spain) for supplying the waste and CSIC for the financial support.

References

  1. 1.
    Sanchez-Valente J, Bokhimi X, Toledo JA (2004) Synthesis and catalytic properties of nanostructured aluminas obtained by sol–gel method. Appl Catal Gen 264(2):175–181. doi: 10.1016/j.apcata.2003.12.041 CrossRefGoogle Scholar
  2. 2.
    Souza-Santos P, Souza-Santos H, Toledo SP (2000) Standard transition aluminas. Electron microscopy studies. Mater Res 3(4):11. doi: 10.1590/S1516-14392000000400003 Google Scholar
  3. 3.
    Boumaza A, Favaro L, Ledion J, Sattonnay G, Brubach JB, Berthet P, Huntz AM, Roy P, Tetot R (2009) Transition alumina phases induced by heat treatment of boehmite: an X-ray diffraction and infrared spectroscopy study. J Solid State Chem 182(5):1171–1176. doi: 10.1016/j.jssc.2009.02.006 CrossRefGoogle Scholar
  4. 4.
    Murali KR, Thirumoorthy P (2010) Characteristics of sol–gel deposited alumina films. J Alloy Compd 500(1):93–95. doi: 10.1016/j.jallcom.2010.03.219 CrossRefGoogle Scholar
  5. 5.
    Li JS, Wang XY, Wang LJ, Hao YX, Huang YL, Zhang Y, Sun XY, Liu XD (2006) Preparation of alumina membrane from aluminium chloride. J Membr Sci 275(1–2):6–11. doi: 10.1016/j.memsci.2005.08.011 CrossRefGoogle Scholar
  6. 6.
    Parida KM, Pradhan AC, Das J, Sahu N (2009) Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Mater Chem Phys 113(1):244–248. doi: 10.1016/j.matchemphys.2008.07.076 CrossRefGoogle Scholar
  7. 7.
    Kim SM, Lee YJ, Jun KW, Park JY, Potdar HS (2007) Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Mater Chem Phys 104(1):56–61. doi: 10.1016/j.matchemphys.2007.02.044 CrossRefGoogle Scholar
  8. 8.
    Wang YH, Wang J, Shen MQ, Wang WL (2009) Synthesis and properties of thermostable gamma-alumina prepared by hydrolysis of phosphide aluminum. J Alloy Compd 467(1–2):405–412. doi: 10.1016/j.jallcom.2007.12.007 CrossRefGoogle Scholar
  9. 9.
    Wang XH, Lu GZ, Guo Y, Wang YS, Guo YL (2005) Preparation of high thermal-stabile alumina by reverse microemulsion method. Mater Chem Phys 90(2–3):225–229. doi: 10.1016/j.matchemphys.2004.11.012 CrossRefGoogle Scholar
  10. 10.
    Passos A, Martins L, Pulcinelli S, Santilli C (2012) Design of hierarchical porous aluminas by using one-pot synthesis and different calcination temperatures. J Sol-Gel Sci Technol. doi: 10.1007/s10971-011-2674-6
  11. 11.
    Schinkel G, Garrn I, Frank B, Gernert U, Schubert H, Schomacker R (2008) Fabrication of alumina ceramics from powders made by sol-gel type hydrolysis in microemulsions. Mater Chem Phys 111(2–3):570–577. doi: 10.1016/j.matchemphys.2008.05.032 CrossRefGoogle Scholar
  12. 12.
    Gocmez H, Ozcan O (2008) Low temperature synthesis of nanocrystalline alpha-Al2O3 by a tartaric acid gel method. Mater Sci Eng A Struct Mater Prop Microstruct Process 475(1–2):20–22. doi: 10.1016/j.msea.2006.12.147 CrossRefGoogle Scholar
  13. 13.
    Martin MI, Rabanal ME, Gomez LS, Torralba JM, Milosevic O (2008) Microstructural and morphological analysis of nanostructured alumina particles synthesized at low temperature via aerosol route. J Eur Ceram Soc 28(13):2487–2494. doi: 10.1016/j.jeurceramsoc.2008.03.019 CrossRefGoogle Scholar
  14. 14.
    Ibrahim DM, Abu-Ayana YM (2009) Preparation of nano alumina via resin synthesis. Mater Chem Phys 113(2–3):579–586. doi: 10.1016/j.matchemphys.2008.07.113 CrossRefGoogle Scholar
  15. 15.
    Nakano H, Makino Y, Sano S (2008) Microstructure of alumina produced by millimeter-wave heating. J Alloy Compd 457(1–2):485–489. doi: 10.1016/j.jallcom.2007.03.007 CrossRefGoogle Scholar
  16. 16.
    López-Delgado A, Tayibi H (2012) Can hazardous waste become a raw material? The case study of an aluminium residue: a review. Waste Manag Res 30(5):474–484. doi: 10.1177/0734242x11422931 CrossRefGoogle Scholar
  17. 17.
    Gonzalo-Delgado L, López-Delgado A, López FA, Alguacil FJ, López-Andrés S (2011) Recycling of hazardous waste from tertiary aluminium industry in a value-added material. Waste Manag Res 29(2):127–134. doi: 10.1177/0734242x10378330 CrossRefGoogle Scholar
  18. 18.
    Rinaldi R, Schuchardt U (2005) On the paradox of transition metal-free alumina-catalyzed epoxidation with aqueous hydrogen peroxide. J Catal 236(2):335–345. doi: 10.1016/j.jcat.2005.10.007 CrossRefGoogle Scholar
  19. 19.
    Alphonse P, Courty M (2005) Structure and thermal behavior of nanocrystalline boehmite. Thermochim Acta 425(1–2):75–89. doi: 10.1016/j.tca.2004.06.009 CrossRefGoogle Scholar
  20. 20.
    Jayaraman V, Periaswami G, Kutty TRN (1998) Influence of the preparative conditions on the precursor phases formed during the synthesis of beta-alumina by the wet chemical gel to crystallite conversions. Mater Chem Phys 52(1):46–53. doi: 10.1016/s0254-0584(98)80005-9 CrossRefGoogle Scholar
  21. 21.
    Ram S (2001) Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and AlO(OH) center dot alpha H2O bulk crystals. Infrared Phys Technol 42(6):547–560. doi: 10.1016/s1350-4495(01)00117-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aurora López-Delgado
    • 1
    Email author
  • Laila Fillali
    • 1
    • 2
  • Jose A. Jiménez
    • 1
  • Sol López-Andrés
    • 2
  1. 1.National Centre for Metallurgical ResearchMadridSpain
  2. 2.Department of Crystallography and Mineralogy, Faculty of GeologyUCMMadridSpain

Personalised recommendations