Journal of Sol-Gel Science and Technology

, Volume 63, Issue 3, pp 510–518 | Cite as

Corrosion protection of AA6061-T4 alloy by sol–gel derived micro and nano-scale hydroxyapatite (HA) coating

  • S. Sonmez
  • B. AksakalEmail author
  • B. Dikici
Original paper


Micron and nano-scale hydroxyapatite (HA) were coated successfully on AA6061-T4 substrates by sol–gel method. Besides, the effects of coating thickness on adhesion strength and corrosion behaviour of the coatings were studied. Corrosion resistance was measured by potentiodynamic polarization test using a potentiostat under in vitro conditions. The coatings before and after corrosion tests were characterized by adhesion tests, a scanning electron microscopy attached with EDS and X-ray diffraction analysis. The results revealed that all the coatings exhibit a passive behaviour in Ringer’s solution. Specimens coated with nano-scale HA had the higher corrosion resistance than micro-scale coatings. The highest corrosion resistance appeared to be for the ~30 μm nano-scale HA coated substrates. However, for micro-scale HA coatings, the highest adhesion resistance was obtained at ~30 μm film thickness.


Hydroxyapatite A6061-T4 Sol–gel Corrosion 


  1. 1.
    Niinomi M (1998) Mater Sci Eng, A 243:231–236CrossRefGoogle Scholar
  2. 2.
    Agraval CM (1998) Reconstr Metals Mater Soc 50:31–35CrossRefGoogle Scholar
  3. 3.
    Aksakal B, Gavgali M, Dikici B (2010) J Mater Eng Perform 19:894–899CrossRefGoogle Scholar
  4. 4.
    Perl DP (1985) Environ Health Perspect 63:149–153CrossRefGoogle Scholar
  5. 5.
    Lee IU, Kim H, Kim S (2000) Surf Coat Technol 131:181–186CrossRefGoogle Scholar
  6. 6.
    Singh R, Dahotre BN (2007) J Mater Sci Mater Med 18:725–751CrossRefGoogle Scholar
  7. 7.
    Zhou YL, Niinomi M (2009) Surf Coat Technol 204:180–186CrossRefGoogle Scholar
  8. 8.
    Kim H, Kim H, Knowles JC, Knowles J (2005) Am Ceram Soc 88:154–159CrossRefGoogle Scholar
  9. 9.
    Buyuksagis A (2010) EJMT 7:1–11Google Scholar
  10. 10.
    Azem FA, Çakır A (2009) Anadolu Uni J Sci Technol 10:291–298Google Scholar
  11. 11.
    Balamurugan A, Balossier G, Kannan S (2007) Mater Sci Eng, C 27:162–171CrossRefGoogle Scholar
  12. 12.
    Joon BP, Young KK (2000) Met Biomater 38:1–15Google Scholar
  13. 13.
    Ige OO, Umoru LE, Adeoye MO (2009) Trends Biomater Artif Organs 23:93–104Google Scholar
  14. 14.
    Williams DF (1994) J Bone Joint Surg 76:348–349Google Scholar
  15. 15.
    Karlsson M (2004) Nano-porous alumina, a potential bone implant coatings. Acta Universitatis Upsaliensis, Dissertation thesis, UppsalaGoogle Scholar
  16. 16.
    Shackelford JF, Alexander W (2001) Materials science and engineering handbook. CRC Press LLC, Boca RatonGoogle Scholar
  17. 17.
    Park JB, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, USAGoogle Scholar
  18. 18.
    Wen CE, Xub W, Hub WY, Hodgsona PD (2007) Acta Biomater 3:403–410CrossRefGoogle Scholar
  19. 19.
    Ak Azem F, Çakır A (2009) J Sol-Gel. Sci Technol 51:190–197Google Scholar
  20. 20.
    Stanishevsky AV, Holliday S (2007) Surf Coat Technol 202:1236–1241CrossRefGoogle Scholar
  21. 21.
    Wang D, Bierwagen GP (2009) Prog Org Coat 64:327–338CrossRefGoogle Scholar
  22. 22.
    Cameron SC, Karlis AG, Ben-Nissan B (1998) Biomaterials 19:2291–2296CrossRefGoogle Scholar
  23. 23.
    Liu DM, Yang Q, Troczynski T (2002) Biomaterials 23:691–698CrossRefGoogle Scholar
  24. 24.
    Cannillo V, Colmenares-Angulo J, Lusvarghi L, Pierli F (2009) J Eur Ceram Soc 29:1665–1667CrossRefGoogle Scholar
  25. 25.
    Aksakal B, Hanyalıoğlu C (2008) J Mater Sci Mater Med 19:2097–2104CrossRefGoogle Scholar
  26. 26.
    Kwok CT, Wong PK, Cheng FT, Man HC (2009) App Sur Sci 255:6736–6744CrossRefGoogle Scholar
  27. 27.
    Mondragón-Cortez P, Vargas-Gutiérrez G (2004) Mater Lett 58:1336–1339CrossRefGoogle Scholar
  28. 28.
    Zheng YF, Liu D, Liu XL, Li L (2008) Appl Surf Sci 255:512–514CrossRefGoogle Scholar
  29. 29.
    Wu G, Zeng X, Li G, Yao S, Wang X (2006) Mater Lett 60:674–678CrossRefGoogle Scholar
  30. 30.
    Davis JR (2000) Corrosion understanding the basics. ASM Int, Materials Park, OhioGoogle Scholar
  31. 31.
    Shi J, Ding C, Wu Y (2001) Surf Coat Technol 137:97–103CrossRefGoogle Scholar
  32. 32.
    Dorozhkin SV (2010) Acta Biomater 6:715–734CrossRefGoogle Scholar
  33. 33.
    Karanjai M, Sundaresan R, Mohan TRR, Kashyap BP (2008) Mater Sci Eng, C 28:1401–1407CrossRefGoogle Scholar
  34. 34.
    Putlyaev VI, Safronova TV (2006) Biomaterials 63:99–102Google Scholar
  35. 35.
    Regi MV, Calbet JMG (2004) Prog Solid State Chem 32:1–31CrossRefGoogle Scholar
  36. 36.
    Mirhadi B, Mehdikhani B, Askari N (2011) Process Appl Ceram 5:193–198Google Scholar
  37. 37.
    Lin FH, Hsu YS, Lin SH, Sun JS (2002) Biomaterials 23:4029–4038CrossRefGoogle Scholar
  38. 38.
    Thamaraiselvi TV, Rajeswari S (2005) Trends Biomater Artif Org 18:242–246Google Scholar
  39. 39.
    Alves APR, Santana FA (2004) Mater Sci Eng, C 24:693–696CrossRefGoogle Scholar
  40. 40.
    AkAzem F, Çakır A (2008) Sci Technol 26:136–143Google Scholar
  41. 41.
    Topcuoglu M, Aydinol MK (2006) Xth Int corr symp 1-4:96–107Google Scholar
  42. 42.
    Cheng K, Gaorong H, Wenjian W, Haibo Q (2003) Mater Res Bull 38:89–97CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringHakkari UniversityHakkariTurkey
  2. 2.Department of Metallurgy and Material EngineeringYildiz Technical UniversityBeşiktaş, IstanbulTurkey
  3. 3.Department of Mechanical EngineeringYuzuncu Yil UniversityVanTurkey

Personalised recommendations