Journal of Sol-Gel Science and Technology

, Volume 63, Issue 3, pp 315–339 | Cite as

Aerogel-based thermal superinsulation: an overview

  • Matthias KoebelEmail author
  • Arnaud Rigacci
  • Patrick Achard
Original Paper


This review is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanomaterials. Today, there are several indicators suggesting that this old vision is likely to become reality in the near future. Based on recent developments in the field, we are confident that aerogels still offer the greatest potential for non-evacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. The practical realization of such products however is time-consuming and a significant amount of R&D activities are still necessary to yield improved aerogel-based insulation products for mass markets.


Aerogel Composite materials Superinsulation Thermal insulation Insulation market Energy efficient buildings Commercialization Sol–gel Thermal conductivity Structure dependence Ambient pressure drying Supercritical CO2 Hydrophobization 



The authors would like to acknowledge Springer publishing and the main editors Michel Aegerter and Nicholas Leventis for their involvement in the Aerogels Handbook by which this review article was inspired. Also, the European Commission, the French Agency for Environment and Energy Management (ADEME), the French National Research Agency (ANR), the French „Fonds Unique Interministériel “(FUI) fund and ARMINES (The Contract Research Association of MINES Schools) for their financial support since the early nineties through different projects (like HILIT, HILIT+, PACTE Aerogels, ISOCOMP and NANO-PU), MINES ParisTech/ARMINES/CEMEF for SEM/TEM characterization support and last but not least, the industrials PCAS FIXIT/HASIT and PAREXLANKO as well as the French Scientific and Technical Centre for Building (CSTB) are warmly acknowledged for fruitful collaborations.


  1. 1.
    Barsky RB, Kilian L (2004) Oil and the macroeconomy since the 1970s. J Econ Persp 18(4):115–134CrossRefGoogle Scholar
  2. 2.
    Woodwell GM (1978) The carbon dioxide question. Sci Am 238:34–43CrossRefGoogle Scholar
  3. 3.
    Cox PM, Betts RA, Jones CD, Spall SA, Totterdell I (2000) Acceleration of global warming due to carbon cycle feedbacks in a coupled climate model. Nature 408:184–187CrossRefGoogle Scholar
  4. 4.
    Houghton JT, Jenkins GJ, Ephraums JJ (1990) Climate change—the IPCC scientific assessment. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Caldeira K, Jain AK, Hoffert MI (2003) Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 299(5615):2052–2054CrossRefGoogle Scholar
  6. 6.
    Weber L (1997) Some reflections on barriers to the efficient use of energy. Energy Policy 25(10):833–835CrossRefGoogle Scholar
  7. 7.
    Aegerter MA, Leventis N, Koebel MM (eds) (2011) Aerogels handbook. Springer, BerlinGoogle Scholar
  8. 8.
    Janda KB, Busch JF (1994) Worldwide status of energy standards for buildings. Energy 19(1):27–44CrossRefGoogle Scholar
  9. 9.
    Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energy Build 37(1):77–86CrossRefGoogle Scholar
  10. 10.
    Lee OJ, Lee KH, Yim TJ, Kim SY, Yoo KP (2002) Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids 298:287–292CrossRefGoogle Scholar
  11. 11.
    Viskanta R, Gosh RJ (1962) Heat transfer by simultaneous conduction and radiation in an absorbing medium. J Heat Trans 2:63–71CrossRefGoogle Scholar
  12. 12.
    Scheuerpflug P, Caps R, Büttner D, Fricke J (1985) Apparent thermal conductivity of evacuated SiO2 aerogel tiles under variations of radiative boundary conditions. Int J Heat Mass Transf 28:2299–2306CrossRefGoogle Scholar
  13. 13.
    Bernasconi A, Sleator T, Posselt D, Kjems JK, Ott HR (1992) Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements. Phys Rev B 45:10363–10376CrossRefGoogle Scholar
  14. 14.
    Vacher R, Woignier T, Pelous J (1988) Structure and self-similarity of silica aerogels. Phys Rev B 37:6500–6503CrossRefGoogle Scholar
  15. 15.
    Craievich A, Aegerter MA, dos Santos DI, Woignier T, Zarzycki J (1986) A SAXS study of silica aerogels. J Non-Cryst Solids 86:394–406CrossRefGoogle Scholar
  16. 16.
    Hasmy A, Foret M, Anglaret E, Pelous J, Vacher R, Jullien R (1995) Small-angle neutron scattering of aerogels: simulations and experiments. J Non-Cryst Solids 186:118–130CrossRefGoogle Scholar
  17. 17.
    Simmler H, Brunner S (2005) Aging and service life of VIP in buildings. Energy Build 37(11):1122–1131CrossRefGoogle Scholar
  18. 18.
    Manz H (2008) On minimizing heat transport in architectural glazing. Renewable Energy 33(1):119–128CrossRefGoogle Scholar
  19. 19.
    Koebel MM, Manz H, Meyerhofer KE, Keller B (2010) Service-life limitations in vacuum glazing: a transient pressure balance model. Sol Energy Mat Sol Cells 94:1015–1024CrossRefGoogle Scholar
  20. 20.
    Caps R, Heinemann U, Ehrmanntraut M, Fricke J (2001) Evacuated insulation panels filled with pyrogenic silica powders − properties and applications. High Temp High Press 33(2):151–156CrossRefGoogle Scholar
  21. 21.
    Koebel MM, El Hawi N, Lu J, Gattiker F, Neuenschwander J (2011) Anodic bonding of activated tin solder alloys in the liquid state: a novel large-area hermetic glass sealing method. Sol Energy Mat Sol Cells 95:3001–3008CrossRefGoogle Scholar
  22. 22.
    Freedonia market study #2434 (2009) Freedonia group. Cleveland, OHGoogle Scholar
  23. 23.
    BCC market study #AVM052B (2009) BCC research Inc. Wellesley, MAGoogle Scholar
  24. 24.
    Teichner SJ, Nicolaon GA, Vicarini MA, Gardes GEE (1976) Inorganic oxide aerogels. Adv Colloid Interf Science 5:245–273CrossRefGoogle Scholar
  25. 25.
    Mehrotra MC (1992) Precursors for aerogels. J Non-Cryst Solids 145:1–10CrossRefGoogle Scholar
  26. 26.
    Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64CrossRefGoogle Scholar
  27. 27.
    Gao GM, Liu DR, Zou HF, Zou LC, Gan SC (2010) Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol 197(3):283–287CrossRefGoogle Scholar
  28. 28.
    Tang Q, Wang T (2005) Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. J Supercritical Fluids 35(1):91–94CrossRefGoogle Scholar
  29. 29.
    Li T, Wang T (2008) Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Mater Chem Phys 112(2):398–401CrossRefGoogle Scholar
  30. 30.
    Shi F, Liu JX, Song K, Wang ZY (2010) Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. J Non-Cryst Solids 356(43):2241–2246CrossRefGoogle Scholar
  31. 31.
    Baccile N, Babonneau F, Bejoy T, Coradin T (2010) Introducing ecodesign in silica sol-gel materials. J Mater Chem 19:8537–8559CrossRefGoogle Scholar
  32. 32.
    Rigacci A, Ehrburger-Dolle F, Geissler E et al (2001) Investigation of the multi-scale structure of silica aerogels by SAXS. J Non-Cryst Solids 285:187–193CrossRefGoogle Scholar
  33. 33.
    Di Bella G, Arrigo I, Catalfamo P, Corigliano F, Mavilia L (2003) Advances in the extraction of silica from glass cullet. Recycl Reuse Waste Mater Proc Int Symp 63719:137–142Google Scholar
  34. 34.
    Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength. Geochim Cosmochim Acta 69(2):293–303CrossRefGoogle Scholar
  35. 35.
    West JK, Hench LL (1995) Molecular-orbital models of silica rings and their vibrational spectra. J. Am. Ceramic Soc 78(4):1093–1096CrossRefGoogle Scholar
  36. 36.
    Greenberg SA, Sinclair D (1955) The polymerization of silicic acid. J Phys Chem 59(5):435–440CrossRefGoogle Scholar
  37. 37.
    Allen LH, Matijevic E (1970) Stability of colloidal silica: II. Ion exchange. Interface Sci 33(3):420–429CrossRefGoogle Scholar
  38. 38.
    Grun M, Unger KK, Matsumoto A (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor Mesopor Mater 27(2–3):207–216CrossRefGoogle Scholar
  39. 39.
    Gross J, Fricke J, Hrubesh LW (1992) Sound-propagation in SiO2 aerogels. J Acoust Soc Am 91(4):2004–2006CrossRefGoogle Scholar
  40. 40.
    Ray SK, Maiti CK, Lahiri SK et al (1992) Properties of silicon dioxide films deposited at low-temperatures by microwave plasma enhanced decomposition of Tetraethylorthosilicate. J Vac Sci Technol, B 10(3):1139–1150CrossRefGoogle Scholar
  41. 41.
    Mackenzie JD, Bescher EP (1998) Structures, properties and potential applications of Ormosils. J Sol-Gel Sci Technol 13(1–3):371–377CrossRefGoogle Scholar
  42. 42.
    Yano S, Iwata K, Kurita K (1998) Physical properties and structure of organic-inorganic hybrid materials produced by sol-gel process. Mater Sci Eng C Biomim Supramol Syst 6(2–3):75–90CrossRefGoogle Scholar
  43. 43.
    Chen Y, Iroh JO (1999) Synthesis and characterization of polyimide silica hybrid composites. Chem Mater 11(5):1218–1222CrossRefGoogle Scholar
  44. 44.
    Liu RL, Shi YF, Wan Y et al (2006) Triconstituent Co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas. J Am Chem Soc 128(35):11652–11662CrossRefGoogle Scholar
  45. 45.
    Kelts LW, Effinger NJ, Melpolder SM (1986) Sol-gel chemistry studied by 1H and 29Si nuclear magnetic resonance, J. Non.-Cryst. Solids 83:353–374Google Scholar
  46. 46.
    Bernards TNM, Oomen EWJL, Vanbommel MJ, Boonstra AH (1992) The effect of TEOG on the hydrolysis condensation mechanism of a 2-step sol-gel process of TEOS. J Non-Cryst Solids 142(3):215–224CrossRefGoogle Scholar
  47. 47.
    Jada SS (1987) Study of tetraethyl orthosilicate hydrolysis by in situ generation of water. Comm Am Chem Soc 70(11):C298–C300Google Scholar
  48. 48.
    Aelion R, Loebel A, Eirich F (1950) Hydrolysis of ethyl silicate. J Am Chem Soc 72(12):5705–5712CrossRefGoogle Scholar
  49. 49.
    Belton DJ, Deschaume O, Patwardhan SV, Perry CC (2010) A solution study of silica condensation and speciation with relevance to in vitro investigations of biosilicification. J Phys Chem B 114(31):9947–9955CrossRefGoogle Scholar
  50. 50.
    Assink RA, Kay BD (1988) Sol-gel kinetics: I. Functional group kinetics. J Non Cryst Solids 99:359–370CrossRefGoogle Scholar
  51. 51.
    Assink RA, Kay BD (1988) Sol-gel kinetics: II. Chemical speciation modeling. J Non Cryst Solids 104:112–122CrossRefGoogle Scholar
  52. 52.
    Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol-gel transition in simple silicates. J Non Cryst Solids 48:47–64CrossRefGoogle Scholar
  53. 53.
    Gurav JL, Nadargi DY, Rao AV (2008) Effect of mixed catalysts system on TEOS-based silica aerogels dried at ambient pressure. Appl Surf Sci 255(5):3019–3027CrossRefGoogle Scholar
  54. 54.
    Jarzebski AB, Lorenc J, Aristov YI, Lisitza N (1995) Porous texture characteristics of a homologous series of base-catalyzed silica aerogels. J Non-Cryst Solids 190(3):198–205CrossRefGoogle Scholar
  55. 55.
    Kesmez O, Kiraz N, Burunkaya E, Camurlu HE, Asilturk M, Arpac E (2010) Effect of amine catalysts on preparation of nanometric SiO2 particles and antireflective films via sol-gel method. J Sol-Gel Sci Technol 56(2):167–176CrossRefGoogle Scholar
  56. 56.
    Cao WQ, Hunt AJ (1994) Improving the visible transparency of silica aerogels. J Non-Cryst Solids 176(1):18–25CrossRefGoogle Scholar
  57. 57.
    Pajonk GM, Elaloui E, Achard P, Chevalier B, Chevalier JL, Durant M (1995) Physical properties of silica gels and aerogels prepared with new polymeric precursors. J Non-Cryst Solids 186:1–8CrossRefGoogle Scholar
  58. 58.
    Begag R (1996) Synthèse et propriétés physico-chimiques de carbogels de silice préparés par la méthode sol-gel (en catalyse acide) à partir de polyéthoxydisiloxanes. Ph D thesis Université de Lyon I (France)Google Scholar
  59. 59.
    Schultz JM, Jensen KI, Kristiansen FH (2005) Super insulating aerogel glazing. Solar Mater Solar Cells 89:275–285CrossRefGoogle Scholar
  60. 60.
    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York, NYGoogle Scholar
  61. 61.
    Einarsrud M-A, Haereid S (1994) Preparation of transparent, monolithic silica xerogels with low density. J Sol-Gel Sci Technol 2(1–3):903–906CrossRefGoogle Scholar
  62. 62.
    Aravind PR, Shajesh P, Soraru GD, Warrier KG (2010) Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol-Gel Sci Technol 54:105–117CrossRefGoogle Scholar
  63. 63.
    Pajonk GM (1989) Drying methods preserving the textural properties of gels. Rev Phys Appl 24(C4):13–22Google Scholar
  64. 64.
    Bisson A, Rigacci A, Lecomte D, Rodier E, Achard P (2003) Drying of silica gels to obtain aerogels : phenomenology and basic techniques, progress in drying technologies, vol 4,—special issue of Drying Technol 21(4): 593–628Google Scholar
  65. 65.
    Iler RK (1979) The chemistry of silica. Wiley, New York NYGoogle Scholar
  66. 66.
    Calas S (1997) Surface et porosité dans les aérogels de silice: étude structurale et texturale. PhD thesis Université de Montpellier (France)Google Scholar
  67. 67.
    Bisson A (2004) Synthèse et étude de matériaux nanostructurés à base de silice pour la superisolatuion thermique. PhD thesis Mines ParisTech (France)Google Scholar
  68. 68.
    Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738CrossRefGoogle Scholar
  69. 69.
    Deng Z, Wang J, Wu A, Shen J, Zhou B (1998) High strength SiO2 aerogel insulation. J Non-Cryst Solids 225:101–104CrossRefGoogle Scholar
  70. 70.
    Li L, Yalcin B, Nguyen BN, Meador MA, Cakmak M (2009) Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture and characterization. Appl Mater Interf 1(11):2491–2501CrossRefGoogle Scholar
  71. 71.
    Bisson A, Rigacci A, Lecomte D, Achard P (2004) Effective thermal conductivity of divided silica xerogels beds. J Non-Cryst Solids 350:379–384CrossRefGoogle Scholar
  72. 72.
    Buratti C, Moretti E (2011) Lighting and energetic characteristics of transparent insulating materials : experimental data and calculation. Indoor Build Environ 20(4):400–411CrossRefGoogle Scholar
  73. 73.
    Haereid S (1993) Preparation and characterization of transparent monolithic silica xerogels with low density. PhD thesis NTNU (Norway)Google Scholar
  74. 74.
    Schwertfeger F, Frank D, Schmidt M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225:24–29CrossRefGoogle Scholar
  75. 75.
    Rao VA, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interf Sci 300:279–285CrossRefGoogle Scholar
  76. 76.
    Kartal AM, Erkey C (2010) Surface modification of silica aerogels by hexamethyldisilazane-carbon dioxide mixtures and their phase behavior. J Supercritical Fluids 53:115–120CrossRefGoogle Scholar
  77. 77.
    Smith DM, Deshpande R, Brinker CJ (1992) Preparation of low-density aerogels at ambient pressure. Mat Res Soc Symp Proc 271:567–572CrossRefGoogle Scholar
  78. 78.
    Hwang SW, Kim TY, Hyun SH (2008) Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels. J Colloid Interf Sci 322:224–230CrossRefGoogle Scholar
  79. 79.
    Reim M, Korner W, Manar J, Korder S, Ardini-Schuster M, Ebert HP, Fricke J (2005) Silica aerogel granulate material for thermal insulation and daylighting. Sol Energy 79(2):131–139CrossRefGoogle Scholar
  80. 80.
    Smith DM, Maskara A, Boes U (1998) Aerogel-based thermal insulation. J Non-Cryst Solids 225:254–259CrossRefGoogle Scholar
  81. 81.
    Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. Rev Phys Appl C4:179–184Google Scholar
  82. 82.
    Ryu J (2000) Flexible aerogel superinsulation and its manufacture. US Pat. # 6068882Google Scholar
  83. 83.
    Trifu R, Bhobho N (2007) Flexible coherent insulating structures. US2007173157Google Scholar
  84. 84.
    Chandradass J, Kang S, Bae D-S (2008) Synthesis of silica aerogel blanket by ambient drying method using waterglass based precursor and glass wool modified alumina sol. J Non-Cryst Solids 354:4115–4119CrossRefGoogle Scholar
  85. 85.
    Bardy ER, Mollendorf JC, Pendergast DR (2007) Thermal conductivity and compressive strain of aerogel insulation blankets under applied hydrostatic pressure. J Heat Transf 129:232–235CrossRefGoogle Scholar
  86. 86.
    Tang Y, Polli A, Bilgrien CJ, Young DR, Rhine WE, Gould GL (2007) Aerogel-foam composites. WO Pat. # 2007146945Google Scholar
  87. 87.
    Lee JK (2007) Organic aerogls reinforced with inorganic fillers. US Pat. # 2007259979Google Scholar
  88. 88.
    Ristic-Lehmann C, Farnworh B, Dutta A, Reis BE (2008) Aerogel/PTFE composite insulating material. US Pat. # 7349215 B2Google Scholar
  89. 89.
    Mensahi J, Bauer U, Pothmann E, Peterson AA, Wilkins AK, Anton M, Doshi D, Dalzell W (2007) Aerogel based composites. WO Pat. # 2007047970Google Scholar
  90. 90.
    Mackenzie JD, Chung YJ, Hu Y (1992) Rubbery ormosils and their applications. J Non-Cryst Solids 147&148:271–279Google Scholar
  91. 91.
    Ou DL, Gould GL (2005) Ormosil aerogels containing silicon bonded linear polymers. WO Pat. # 2005068361Google Scholar
  92. 92.
    Ou DL, Gould GL, Stepanian CJ (2006) Ormosil aerogels containing silicon bonded polymethacrylate. WO Pat. # 2005098553Google Scholar
  93. 93.
    Kanamori K, Aizawa M, Nakanishi K, Hanada T (2008) Elastic organic-inorganic hybrid aerogels and xerogels. J Sol-Gel Sci Technol 48:172–181CrossRefGoogle Scholar
  94. 94.
    Capadona LA, Meador MA, Alunni A, Fabrizio EF, Vassilaras P, Leventis N (2006) Flexible, low-density polymer cross-linked silica aerogels. Polymer 47:5754–5761CrossRefGoogle Scholar
  95. 95.
    Leventis N, Mulik S, Wang X, Dass A, Patil VU, Sotiriou-Leventis C, Lu H, Churu G, Capecelatro A (2008) Polymer nano-encapsulation of template mesoporous silica monoliths with improved mechanical properties. J Non-Cryst Solids 354:632–644CrossRefGoogle Scholar
  96. 96.
    Randall JP, Meador MA, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace. ACS Appl Mater Interf 3:613–626CrossRefGoogle Scholar
  97. 97.
    Rhine WE, Ou, DL, Sonn JH (2007) Hybrid organic-inorganic materials and methods of preparing the same, WO Pat. # 2007126410Google Scholar
  98. 98.
    Leventis N, Palczer A, McCorkle L (2005) Nanoengineered silica-polymer composite aerogels with no need for Supercritical fluid drying. J Sol-Gel Sci Technol 35:99–105CrossRefGoogle Scholar
  99. 99.
    Yang H, Kong X, Zhang Y, Wu C, Cao E (2011) Mechanical properties of polymer-modified silica aerogels dried under ambient pressure. J Non-Crystal Solids 357:3447–3453CrossRefGoogle Scholar
  100. 100.
    Pekala RW, Kong FM (1992) Resorcinol-formaldehyde aerogels and their carbonised derivatives. Polym Prepr 30:221–223CrossRefGoogle Scholar
  101. 101.
    Lu X, Caps R, Fricke J, Alviso CT, Pekala RW (1995) Correlation between structure and thermal conductivity of organic aerogels. J Non-Cryst Solids 188:226–234CrossRefGoogle Scholar
  102. 102.
    Pekala RW, Alviso CT, LeMay JD (1990) Organic aerogels: microstructural dependence of mechanical properties in compression. J Non-Cryst Solids 125:67–75CrossRefGoogle Scholar
  103. 103.
    Biesmans GL (1999) Polyisocyanate based aerogel. US Pat. # 5990184Google Scholar
  104. 104.
    Biesmans G, Randall D, Francais E, Perrut M (1998) Polyurethane-based organic aerogels’ thermal performance. J Non-Cryst Solids 225:36–40CrossRefGoogle Scholar
  105. 105.
    Rigacci A, Maréchal JC, Repoux M, Moreno M, Achard P (2004) Elaboration of aerogels and xerogels of polyurethane for thermal insulation. J Non-Cryst Solids 350:372–378CrossRefGoogle Scholar
  106. 106.
    Lee JK, Gould GK, Rhine W (2009) Polyurea based aerogel for high performance thermal insulation material. J Sol-Gel Sci Technol 49:209–220CrossRefGoogle Scholar
  107. 107.
    Egger CC, du Fresne C, Schmidt D, Yang J, Schädler V (2008) Design of highly porous melamine-based networks through a bicontinuous microemulsion templating strategy. J Sol-Gel Sci Technol 48:86–94CrossRefGoogle Scholar
  108. 108.
    du Fresne C, Schmidt DF, Egger C, Schädler V (2007) Supramolecular templating of organic xerogels. XVth international sol-gel conference, Montpellier, France, Sept 2–7, p 129Google Scholar
  109. 109.
    Lee JK, Gould GL (2007) Polycyclopentadiene based aerogel: a new insulation material. J Sol-Gel Sci Technol 44:29–40CrossRefGoogle Scholar
  110. 110.
    Company website:
  111. 111.
    Company website:
  112. 112.
    Company website:
  113. 113.
    Frisch G, Zimmermann A, Schwertfeger F (1997) Use of aerogels in agriculture. MX Pat. # 9706411Google Scholar
  114. 114.
    Vukasovich MS (1970) Fluorescent pigment. GB Pat. # 1191483Google Scholar
  115. 115.
  116. 116.
    Company website:
  117. 117.
  118. 118.
    Company website:
  119. 119.
    Wang X-Y, Harpster G, Hunter J (2007) Nasa TM-report #214675Google Scholar
  120. 120.
    Henning S (1985) Large-scal production of airglass. In: Fricke J (ed) Aerogels. Springer, Berlin, pp 39–41Google Scholar
  121. 121.
    Pajonk G, Elaloui E, Begag R, Durant M, Chevalier B, Chevalier JL, Achard P (1998) Process for the preparation of monolithic silica aerogels. US Pat. # 5795557Google Scholar
  122. 122.
    Jensen KI, Kristiansen FH, Schultz JM (2005) Highly insulating and light transmitting aerogel glazing for super-insulating windows : HILI+ (European project ENK6-CT-2002-00648), Public final reportGoogle Scholar
  123. 123.
    Company website:
  124. 124.
    Company website:
  125. 125.
    Company website:
  126. 126.
    Company website:
  127. 127.
    German product website:
  128. 128.
    Stahl T, Brunner S, Zimmermann M, Ghazi Wakili K, (2011) Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build 44:114–117Google Scholar
  129. 129.
    Company website:
  130. 130.
    Company website:
  131. 131.
    Achard P, Rigacci A, Echantillac T, Bellet A, Aulaginer M, Daubresse A. Insulating silica xerogel plaster, International patent WO 2011/083174Google Scholar
  132. 132.
    Ratke L (2008) Herstellung und Eigenschaften eines neuen Leichtbetons: Aerogelbeton. Beton- und Stahlbetonbau 103:236–243CrossRefGoogle Scholar
  133. 133.
    Company website:
  134. 134.
    Company website:
  135. 135.
    Savolainen K, Pylkkaenen L, Norppa H, Falck G, Lindberg H, Tuomi T, Vippola M, Alenius H, Brouwer D, Mark D, Bard D, Berges M, Jankowska E, Posniak M, Farmer P, Singh R, Krombach F (2008) Vision on safe nanoparticles and nanotechnologies: global and EU perspective. Nanosafety and REACH. Toxicol Lett 180:S21Google Scholar
  136. 136.
    Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Matthias Koebel
    • 1
    Email author
  • Arnaud Rigacci
    • 2
  • Patrick Achard
    • 2
  1. 1.Empa, Swiss Federal Laboratories for Materials Science and TechnologyDübendorfSwitzerland
  2. 2.MINES ParisTech, CEP, Centre Energétique et ProcédésSophia AntipolisFrance

Personalised recommendations