Advertisement

Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method

  • V. CarattoEmail author
  • L. Setti
  • S. Campodonico
  • M. M. Carnasciali
  • R. Botter
  • M. Ferretti
Original Paper

Abstract

The N-doped TiO2 has been synthesized by sol–gel method, using titanium isopropoxide, isopropanol and an aqueous solution of ammonia with ratio 2:1:10. The concentrations used for the NH3 aqueous solution were 3, 7, 10 and 15 %. The samples have been analysed by X-ray diffraction, electron microscopy (SEM and TEM) thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), micro-Raman spectroscopy and diffuse reflectivity. TEM, SEM, DSC and TGA showed that the morphology is influenced by the presence of N3− ions but not by the concentration of the solution. Instead reflectance gave us a relation between values of the energy gap and the concentration of N3− ions: the gap between valence and conduction band lowers as the concentration of NH3 in the starting solution increases. From these results we can say that the properties of the material have been tuned by doping with nitrogen ions because the particles absorb more light in the visible range, and this is important for photovoltaic and photocatalytic applications.

Keywords

Photocatalysis N-doped TiO2 Sol–gel method Nanoparticles Visible-light sensitization Photovoltaic 

Notes

Acknowledgments

The authors are indebted to Cristina Bernini for helpful assistance in SEM characterisation and to Elisabetta Finocchio for diffuse reflectance analysis.

References

  1. 1.
    Keshmiri M, Mohseni M, Troczynski T (2004) Appl Catal B 53(4):209–219CrossRefGoogle Scholar
  2. 2.
    Yu J, Wang B (2010) Appl Catal B 94(3–4):295–302Google Scholar
  3. 3.
    Paunesku T, Ke T, Dharmakumar R, Mascheri N, Wu A, Lai B, Vogt S, Maser J, Thurn K, Szolc-Kowalska B, Larson A, Bergan RC, Omary R, Li D, Lu Z, Woloschak GE (2008) Nanomed—Nanotechnol Biol Med 4(3):201–207CrossRefGoogle Scholar
  4. 4.
    Burke A, Ito S, Snaith H, Bach U, Kwiatkowski J, Grätzel M (2008) Nano Lett 8(4):977–981CrossRefGoogle Scholar
  5. 5.
    Dohrmann JK, Schaaf NS (1992) J Phys Chem 96(11):4558–4563CrossRefGoogle Scholar
  6. 6.
    Caballero L, Whitehead KA, Allen NS, Verran J (2009) J Photochem Photobiol A Chem 202(2–3):92–98CrossRefGoogle Scholar
  7. 7.
    Muscat J, Swamy V, Harrison NM (2002) Phys Rev B 65:224112–224127CrossRefGoogle Scholar
  8. 8.
    Gribb AA, Banfield JF (1997) Am Miner 82:717–728Google Scholar
  9. 9.
    Caratto V, Ferretti M, Setti L (2012) Appl Surf Sci 258(7):2393–2396CrossRefGoogle Scholar
  10. 10.
    Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379(1–2):7–14CrossRefGoogle Scholar
  11. 11.
    Zhang H, Banfield JF (1998) J Mater Chem 8(9):2073–2076CrossRefGoogle Scholar
  12. 12.
    Chen GS, Guo SY, Zhang F (2011) Adv Mater Res 183–185:591–594CrossRefGoogle Scholar
  13. 13.
    Chen X, Mao SS (2007) Chem Rev 107(7):2891–2959CrossRefGoogle Scholar
  14. 14.
    Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95(3):35–758CrossRefGoogle Scholar
  15. 15.
    Fox MA, Dulay MT (1993) Chem Rev 93(1):341–357CrossRefGoogle Scholar
  16. 16.
    Klosek S, Raftery D (2001) J Phys Chem B 105(14):2815–2819CrossRefGoogle Scholar
  17. 17.
    Surolia PK, Tayade RJ, Jasra RV (2007) Ind Eng Chem Res 46(19):6196–6203CrossRefGoogle Scholar
  18. 18.
    Mohamed MM, Al-Esaimi MM (2006) J Mol Catal A 255(1–2):53–61Google Scholar
  19. 19.
    Karakitsou KE, Verykios XE (1993) J Phys Chem 97(6):1184–1189CrossRefGoogle Scholar
  20. 20.
    Yang S, Gao L (2004) J Am Ceram Soc 87(9):1803–1805CrossRefGoogle Scholar
  21. 21.
    Cong Y, Zhang J, Chen F, Anpo M (2007) J Phys Chem C 111(19):6976–6982CrossRefGoogle Scholar
  22. 22.
    Anpo M, Dohshi S, Kitano M, Hu Y, Takeuchi M, Matsuoka M (2005) Rev Mater Res 35:1–27CrossRefGoogle Scholar
  23. 23.
    Ohno T, Mitsui T, Matsumura M (2003) Chem Lett 32(4):364–365CrossRefGoogle Scholar
  24. 24.
    Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3(8):1049–1051CrossRefGoogle Scholar
  25. 25.
    Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17(25):6349–6353CrossRefGoogle Scholar
  26. 26.
    Ohno T, Tsubota K, Nishijima K, Miyamoto Z (2004) Chem Lett 33(6):750–751CrossRefGoogle Scholar
  27. 27.
    Wang S, Meng S, Zhang X, Wang H, Zhong W, Du Q (2007) Chem Phys Lett 444(4–6):292–296CrossRefGoogle Scholar
  28. 28.
    Hench LL, West JK (1990) Chem Rev 90(1):33–72CrossRefGoogle Scholar
  29. 29.
    De la Romero Cruz D, Torres Torres G, Arévalo JC, Gomez R, Aguilar-Elguezabal A (2010) J Sol Gel Sci Technol 56(3):219–226CrossRefGoogle Scholar
  30. 30.
    Liu Y, Chen X, Li J, Burda C (2005) Chemosphere 61(1):11–18CrossRefGoogle Scholar
  31. 31.
    Chen X, Liu L, Mao S (2011) Science 331(6018):746–750CrossRefGoogle Scholar
  32. 32.
    Periyat P, Pillai SC, McCormack DE, Colreavy J, Hinder SJ (2008) J Phys Chem C 112(20):7644–7652CrossRefGoogle Scholar
  33. 33.
    Barnard AS, Curtiss LA (2005) Nano Lett 5(7):1261–1266CrossRefGoogle Scholar
  34. 34.
    Oshaaka T, Izumi F, Fujiki Y (1978) J Raman Spectrosc 7(6):321–324CrossRefGoogle Scholar
  35. 35.
    Hong NH, Sakai J, Poirot N, Brize V (2006) Phys Rev B 73:132404CrossRefGoogle Scholar
  36. 36.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293(5528):269–271CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • V. Caratto
    • 1
    • 2
    Email author
  • L. Setti
    • 1
    • 2
  • S. Campodonico
    • 1
  • M. M. Carnasciali
    • 1
  • R. Botter
    • 3
  • M. Ferretti
    • 1
    • 2
  1. 1.Dipartimento di Chimica e Chimica IndustrialeUniversità di GenovaGenoaItaly
  2. 2.CNR-SPINGenoaItaly
  3. 3.Dipartimento di Ingegneria Chimica e di ProcessoUniversità di GenovaGenoaItaly

Personalised recommendations