Journal of Sol-Gel Science and Technology

, Volume 62, Issue 3, pp 453–459 | Cite as

Magnesium doped ZnO nanoparticles embedded ZnO nanorod hybrid electrodes for dye sensitized solar cells

  • C. Justin Raj
  • S. N. Karthick
  • K. V. Hemalatha
  • Min-Kyu Son
  • Hee-Je Kim
  • K. Prabakar
Original Paper


We report a novel type of Mg doped ZnO nanoparticles (ZMP) embedded on hydrothermally grown ZnO nanorod (ZR) based photoanode dye sensitized solar cells. The crystallinity, composition and morphology of the photoanodes were characterized by using X-ray diffraction analysis, X-ray photoelectron spectroscopy and scanning electron microscopy. The amount of dye absorbed in the photoanode was observed using UV visible spectral analysis. The improved internal resistance and charge-transfer kinetics of the fabricated cells were analyzed using electrochemical impedance spectroscopy. The ZMP embedded electrode of low thickness (~2.5 μm) gained an enhanced short-circuit current density of 8.56 mA/cm2, open-circuit photo voltage of 0.71 V, fill factor of 0.51, and overall conversion efficiency of 2.91 % under 1 sun illumination. This shows high conversion efficiency and performance than that of ZnO nanorod (η ~ 0.22 %) and bare ZnO nanoparticles (ZP) embedded ZnO nanorod (η ~ 1.04 %) based cells. The presence of Mg ions in the ZnO nanoparticle hinders the interfacial recombination of the photo-excited electrons with the electrolyte and also shows better dye absorption than that of ZR. These factors can significantly enhance solar-cell performance and increase the efficiency of the ZMP based dye sensitized solar cells.


Nanostructured materials Dye sensitized solar cells Zinc oxide Photoanode Nanorods Thin films 



The author C.J.R would like to thank the BRAIN KOREA21 (BK21) for its financial support. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0009749).


  1. 1.
    Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nanowire dye-sensitized solar cells. Nat Mater 4:455–459CrossRefGoogle Scholar
  2. 2.
    Martinson ABF, Elam JW, Hupp JT, Pellin MJ (2007) ZnO nanotube based dye-sensitized solar cells. Nano Lett 7:2183–2187CrossRefGoogle Scholar
  3. 3.
    Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118CrossRefGoogle Scholar
  4. 4.
    Benkstein KD, Kopidakis N, Lagemaat JV, Frank AJ (2003) Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. J Phys Chem B 107:7759–7767CrossRefGoogle Scholar
  5. 5.
    Turner GM, Beard MC, Schmuttenmaer CA (2002) Carrier localization and cooling in dye-sensitized nanocrystalline titanium dioxide. J Phys Chem B 106:11716–11719CrossRefGoogle Scholar
  6. 6.
    Lagemaat JVD, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205CrossRefGoogle Scholar
  7. 7.
    Zhang Q, Dandeneau CS, Zhou X, Cao G (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater 21:4087–4108CrossRefGoogle Scholar
  8. 8.
    Yong SY, Zhang Q, Park K, Dandeneau CS, Zhou X, Triampo D, Cao G (2010) ZnO nanoparticles and nanowire array hybrid photoanodes for dye-sensitized solar cells. Appl Phys Lett 96:073115–073117CrossRefGoogle Scholar
  9. 9.
    Baxter JB, Aydil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90:607–622CrossRefGoogle Scholar
  10. 10.
    Chen W, Zhang H, Hsing IM, Yang S (2009) A new photoanode architecture of dye sensitized solar cell based on ZnO nanotetrapods with no need for calcinations. Electrochem Commun 11:1057–1060CrossRefGoogle Scholar
  11. 11.
    Keis K, Lindgren J, Lindquist S-E, Hagfeldt A (2000) Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16:4688–4694CrossRefGoogle Scholar
  12. 12.
    Katoh R, Furube A, Yoshihara T, Hara K, Fujihashi G, Takano S, Murata S, Arakawa H, Tachiya M (2004) Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) films. J Phys Chem B 108:4818–4822CrossRefGoogle Scholar
  13. 13.
    Zhang Q, Dandeneau CS, Candelaria S, Liu D, Garcia BB, Zhou X, Jeong YH, Cao G (2010) Effects of lithium ions on dye-sensitized ZnO aggregate solar cells. Chem Mater 22:2427–2433CrossRefGoogle Scholar
  14. 14.
    de Souza GA, Davolos MR, Masaki N, Yanagida S, Morandeira A, Durrant JR, Freitas JN, Nogueira AF (2008) Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Trans 11:1487–1491Google Scholar
  15. 15.
    Shin YJ, Lee JH, Park JH, Park NG (2007) Enhanced photovoltaic properties of SiO2-treated ZnO nanocrystalline electrode for dye-sensitized solar cell. Chem Lett 36:1506–1507CrossRefGoogle Scholar
  16. 16.
    Prabakar K, Son M, Kim W-Y, Kim H (2011) TiO2 thin film encapsulated ZnO nanorod and nanoflower dye sensitized solar cells. Mater Chem Phys 125:12–14CrossRefGoogle Scholar
  17. 17.
    Ohtomo A, Tamura K, Kawasaki M, Makino T, Segawa Y, Tang ZK, Wong GKL, Matsumoto Y, Koinuma H (2000) Room-temperature stimulated emission of excitons in ZnO/(Mg, Zn)O superlattices. Appl Phys Lett 77:2204–2206CrossRefGoogle Scholar
  18. 18.
    Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y (1998) MgxZn1−xO as a II–VI widegap semiconductor alloy. Appl Phys Lett 72:2466–2468CrossRefGoogle Scholar
  19. 19.
    Ku CH, Wu JJ (2007) Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 18:505706–505714CrossRefGoogle Scholar
  20. 20.
    Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333CrossRefGoogle Scholar
  21. 21.
    Adachi M, Sakamoto M, Jiu J, Ogata Y, Isoda S (2006) Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J Phys Chem B 110:13872–13880CrossRefGoogle Scholar
  22. 22.
    Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energy Mater Sol Cells 87:117–131CrossRefGoogle Scholar
  23. 23.
    Hoshikawa T, Kikuchi R, Sasaki K, Eguchi K (2002) Impedance analysis of electronic transport in dye-sensitized solar cells. Eletrochemistry 70:675–680Google Scholar
  24. 24.
    Hoshikawa T, Yamada M, Kikuchi R, Eguchi K (2005) Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells. J Eletrochem Soc 152:E68–E73CrossRefGoogle Scholar
  25. 25.
    Bisquert J (2003) Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys Chem Chem Phys 5:5360–5364CrossRefGoogle Scholar
  26. 26.
    Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2002) Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chem Commun 14:1464–1465CrossRefGoogle Scholar
  27. 27.
    Koh JK, Kim J, Kim B, Kim JH, Kim E (2011) Highly efficient, iodine-free dye-sensitized solar cells with solid-state synthesis of conducting polymers. Adv Mater 23:1641–1646CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C. Justin Raj
    • 1
  • S. N. Karthick
    • 1
  • K. V. Hemalatha
    • 1
  • Min-Kyu Son
    • 1
  • Hee-Je Kim
    • 1
  • K. Prabakar
    • 1
  1. 1.Department of Electrical EngineeringPusan National UniversityBusanSouth Korea

Personalised recommendations