Advertisement

Journal of Sol-Gel Science and Technology

, Volume 65, Issue 1, pp 28–35 | Cite as

Transparent conducting Sn:ZnO films deposited from nanoparticles

  • Li Luo
  • Kathrin Häfliger
  • Dan Xie
  • Markus Niederberger
Original paper

Abstract

Homogeneous transparent conducting Sn:ZnO films on fused silica substrates were prepared by dip-coating from nanoparticle dispersions, while the nanocrystalline Sn:ZnO particles with different dopant concentrations were synthesized by microwave-assisted non-aqueous sol–gel process using Sn(IV) tert-butoxide and Zn(II) acetate as precursors and benzyl alcohol as solvent. The dopant concentration had a great impact on the electrical properties of the films. A minimum resistivity of 20.3 Ω cm was obtained for a porous Sn:ZnO film with initial Sn concentration of 7.5 mol% after annealing in air and post-annealing in N2 at 600 °C. The resistivity of this porous film could further be reduced to 2.6 and 0.6 Ω cm after densified in Sn:ZnO and Al:ZnO reaction solution, respectively. The average optical transmittance of a 400-nm-thick Sn:ZnO film densified with Sn:ZnO after the two annealing steps was 91%.

Keywords

Transparent conducting films Sn:ZnO Nanoparticles Microwave-assisted nonaqueous synthesis 

Notes

Acknowledgments

Financial support by ETH Zürich (ETH-07 09-2) is gratefully acknowledged. We also thank Niklaus Kränzlin for helpful discussions regarding the UV–Vis spectra measurements and analyses.

References

  1. 1.
    Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sens Actuators B 107:379–386CrossRefGoogle Scholar
  2. 2.
    Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sens Actuators B 115:247–251CrossRefGoogle Scholar
  3. 3.
    Nanto H, Sokooshi H, Kawai T (1993) Sens Actuators B 14:715–717CrossRefGoogle Scholar
  4. 4.
    Iwabuchi Y, Shiino O, Yoshikawa M, Kamei M (2007) Japan Patent JP2007311041-A, 29 Nov 2007Google Scholar
  5. 5.
    Minami T, Miyata T, Ohtani Y (2007) Phys Status Solidi A 204:3145–3151CrossRefGoogle Scholar
  6. 6.
    Choi SE, Oh YT, Ham HK, Kim TW, Heo GS, Park JW, Choi BH, Shin DC (2011) Curr Appl Phys 11:S255–S257CrossRefGoogle Scholar
  7. 7.
    Nam SH, Kim MH, Yoo DG, Jeong SH, Kim DY, Lee NE, Boo JH (2010) Surf Rev Lett 17:121–127CrossRefGoogle Scholar
  8. 8.
    Hong JS, Kim SM, Park SJ, Choi HW, Kim KH (2010) Mol Cryst Liq Cryst 520:295–303CrossRefGoogle Scholar
  9. 9.
    Yoo DG, Nam SH, Kim MH, Jeong SH, Jee HG, Lee HJ, Lee NE, Hong BY, Kim YJ, Jung D, Boo JH (2008) Surf Coat Technol 202:5476–5479CrossRefGoogle Scholar
  10. 10.
    Park SHK, Ryu M, Hwang CS, Yang S, Byun C, Lee JI, Shin J, Yoon SM, Chu HY, Cho KI, Lee K, Oh MS, Im S (2008) Sid Int Symp Dig Tec 39:629–632CrossRefGoogle Scholar
  11. 11.
    Granqvist CG (2007) Sol Energy Mater Sol Cells 91:1529–1598CrossRefGoogle Scholar
  12. 12.
    Kang DW, Kuk SH, Ji KS, Lee HM, Han MK (2011) Sol Energy Mater Sol Cells 95:138–141CrossRefGoogle Scholar
  13. 13.
    Kim D, Kim H, Jang K, Park S, Pillai K, Yi J (2011) J Electrochem Soc 158:D191–D195CrossRefGoogle Scholar
  14. 14.
    Yoshida Y, Tanaka S, Hiromitsu I, Fujita Y, Yoshino K (2008) Jpn J Appl Phys 47:867–871CrossRefGoogle Scholar
  15. 15.
    Sundaramoorthy R, Repins IL, Gennett T, Pern FJ, Albin D, Li JAV, DeHart C, Glynn S, Perkins JD, Ginley DS, Gessert T (2009) IEEE Phot Spec Conf 1–3:2225–2230Google Scholar
  16. 16.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173–301CrossRefGoogle Scholar
  17. 17.
    Kurz A, Aegerter MA (2004) J Sol-Gel Sci Technol 31:267–271CrossRefGoogle Scholar
  18. 18.
    Holmelund E, Schou J, Tougaard S, Larsen NB (2002) Appl Surf Sci 197:467–471CrossRefGoogle Scholar
  19. 19.
    Kelly PJ, Zhou Y (2006) J Vac Sci Technol A 24:1782–1789CrossRefGoogle Scholar
  20. 20.
    Bae SY, Na CW, Kang JH, Park J (2005) J Phys Chem B 109:2526–2531CrossRefGoogle Scholar
  21. 21.
    Allah FK, Abe SY, Nunez CM, Khelil A, Cattin L, Morsli M, Bernede JC, Bougrine A, del Valle MA, Diaz FR (2007) Appl Surf Sci 253:9241–9247CrossRefGoogle Scholar
  22. 22.
    Chen KJ, Hung FY, Chang SJ, Young SJ, Hu ZS, Chang SP (2010) J Sol-Gel Sci Technol 54:347–354CrossRefGoogle Scholar
  23. 23.
    Kyaw AKK, Sun XW, Jiang CY (2009) J Sol-Gel Sci Technol 52:348–355CrossRefGoogle Scholar
  24. 24.
    Goebbert C, Nonninger R, Aegerter MA, Schmidt H (1999) Thin Solid Films 351:79–84CrossRefGoogle Scholar
  25. 25.
    Prodi-Schwab A, Luthge T, Jahn R, Herbig B, Lobmann P (2008) J Sol-Gel Sci Technol 47:68–73CrossRefGoogle Scholar
  26. 26.
    Bilecka I, Djerdj I, Niederberger M (2008) Chem Commun 886–888Google Scholar
  27. 27.
    Bilecka I, Luo L, Djerdj I, Rossell MD, Jagodic M, Jaglicic Z, Masubuchi Y, Kikkawa S, Niederberger M (2011) J Phys Chem C 115:1484–1495CrossRefGoogle Scholar
  28. 28.
    Tsaroucha M, Aksu Y, Irran E, Driess M (2011) Chem Mater 23:2428–2438CrossRefGoogle Scholar
  29. 29.
    Coelho AA (2007) TOPAS-Academic V4.1. http://www.topas-academic.net/
  30. 30.
    Young RA (ed) (1993) The Rietveld Method. Oxford University Press, IUCr Book SeriesGoogle Scholar
  31. 31.
    Finger LW, Cox DE, Jephcoat AP (1994) J Appl Crystallogr 27:892–900CrossRefGoogle Scholar
  32. 32.
    Dollase WA (1986) J Appl Crystallogr 19:267–272CrossRefGoogle Scholar
  33. 33.
    Snyder RL, Bunge HJ, Fiala J (eds) (1999) Defect and microstructure analysis from diffraction. Oxford University Press, New York, pp 94–126Google Scholar
  34. 34.
    Balzar D, Audebrand N, Daymond MR, Fitch A, Hewat A, Langford JI, Le Bail A, Louer D, Masson O, McCowan CN, Popa NC, Stephens PW, Toby BH (2004) J Appl Crystallogr 37:911–924CrossRefGoogle Scholar
  35. 35.
    McCusker LB, Von Dreele RB, Cox DE, Louer D, Scardi P (1999) J Appl Crystallogr 32:36–50CrossRefGoogle Scholar
  36. 36.
    Pitschke W, Hermann H, Mattern N (1993) J Appl Crystallogr 26:132–134CrossRefGoogle Scholar
  37. 37.
    Karvaly B, Hevesi I (1971) Z Naturforsch A Phys Sci 26:245–249Google Scholar
  38. 38.
    Wendlandt WW, Hecht HG (1966) Reflectance Spectroscopy. Wiley-Interscience, New YorkGoogle Scholar
  39. 39.
    Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326–1337CrossRefGoogle Scholar
  40. 40.
    Stroppa DG, Montoro LA, Beltran A, Conti TG, da Silva RO, Andres J, Longo E, Leite ER, Ramirez AJ (2009) J Am Chem Soc 131:14544–14548CrossRefGoogle Scholar
  41. 41.
    Shannon RD (1976) Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  42. 42.
    Hu JH, Gordon RG (1992) J Appl Phys 72:5381–5392CrossRefGoogle Scholar
  43. 43.
    Kumar V, Sharma SK, Sharma TP, Singh V (1999) Opt Mater 12:115–119CrossRefGoogle Scholar
  44. 44.
    Hamberg I, Granqvist CG (1986) J Appl Phys 60:R123–R159CrossRefGoogle Scholar
  45. 45.
    Hammarberg E, Prodi-Schwab A, Feldmann C (2009) J Colloid Interface Sci 334:29–36CrossRefGoogle Scholar
  46. 46.
    Yung KC, Liem H, Choy HS (2009) J Phys D Appl Phys 42:185002/1–5Google Scholar
  47. 47.
    Benelmadjat H, Boudine B, Halimi O, Sebais M (2009) Opt Laser Technol 41:630–633CrossRefGoogle Scholar
  48. 48.
    Sernelius BE, Berggren KF, Jin ZC, Hamberg I, Granqvist CG (1988) Phys Rev B 37:10244–10248CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Li Luo
    • 1
  • Kathrin Häfliger
    • 1
  • Dan Xie
    • 1
  • Markus Niederberger
    • 1
  1. 1.Department of MaterialsETH ZurichZurichSwitzerland

Personalised recommendations