Journal of Sol-Gel Science and Technology

, Volume 62, Issue 1, pp 98–110 | Cite as

Disordered carbon nanofibers/LiCoPO4 composites as cathode materials for lithium ion batteries

  • Angelina Sarapulova
  • Daria Mikhailova
  • Ljubomira Ana Schmitt
  • Steffen Oswald
  • Natalia Bramnik
  • Helmut Ehrenberg
Original Paper


LiCoPO4-coated disordered carbon nanofibers (CNFs/LiCoPO4) were obtained by a sol–gel method, using triethyl phosphite or triethyl phosphate as the phosphorous source. The crystal structure of the products was analyzed by X-ray powder diffraction, while morphology was studied using scanning electron microscopy, transmission electron microscopy, Auger electron spectroscopy and X-ray photoelectron spectroscopy. Optimal synthesis conditions for the CNFs/LiCoPO4 in light of the best electrochemical performance are discussed. The best discharge capacity 105 mAh/g (or ca. 63% of the theoretical capacity) shows the material with 40% CNFs/LiCoPO4 and addition coating by carbon black. This composition has a best purity of active materials and point coverage of CNFs. The X-ray photoelectron C1s spectra of the CNFs surface without and with sputter erosion show enhancement of C–O bonds at the fiber surface, which does not influence significantly electrochemical behavior of the composite materials.


Phosphoolivines Disordered CNFs/LiCoPO4 composite Triethyl phosphite- and triethyl phosphate-based sol–gel method Li extraction/insertion mechanism 


  1. 1.
    Shui JL, Yu Y, Yang XF, Chen CH (2006) Electrochem Commun 8:1087–1091CrossRefGoogle Scholar
  2. 2.
    Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid State Lett 3:178CrossRefGoogle Scholar
  3. 3.
    Lloris JM, Pe′rez Vicente C, Tirado JL (2002) Electrochem Solid State Lett 5(10):A234–A237CrossRefGoogle Scholar
  4. 4.
    Bramnik NN, Bramnik KG, Baehtz C, Ehrenberg H (2005) J Power Sources 145:74CrossRefGoogle Scholar
  5. 5.
    Bramnik NN, Nikolowski K, Trots DM, Ehrenberg H (2008) Electrochem Solid State Lett 11(6):A89–A93CrossRefGoogle Scholar
  6. 6.
    Vasanthi R, Kalpana D, Renganathan NG (2008) J Solid State Electrochem 12:961–969CrossRefGoogle Scholar
  7. 7.
    Jin B, Gu H-B, Kim K-W (2008) J Solid State Electrochem 12:105–111CrossRefGoogle Scholar
  8. 8.
    Yang J, Xu JJ (2006) J Electrochem Soc 153:A716–A723CrossRefGoogle Scholar
  9. 9.
    Thorat IV, Mathur V, Harb JN, Wheeler DR (2006) J Power Sources 162:673–678CrossRefGoogle Scholar
  10. 10.
    Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) Solid State Ion 178:1676–1693CrossRefGoogle Scholar
  11. 11.
    Zhao Y, Wang S, Zhao C, Xia D (2009) Rare Metals 28:117–121CrossRefGoogle Scholar
  12. 12.
    Vadivel Murugan A, Muraliganth T, Manthiram A (2009) J Electrochem Soc 156:A79–A83CrossRefGoogle Scholar
  13. 13.
    Wang GX, Bewlay S, Yao J, Ahn JH, Dou SX, Liu HK (2004) Electrochem Solid State Lett 7(12):A503–A506CrossRefGoogle Scholar
  14. 14.
    Sivakumar BM, Bramnik NN, Ensling D, Ehrenberg H, Jaegermann W (2008) J Power Sources 180:553–560CrossRefGoogle Scholar
  15. 15.
    Wolfenstine J (2006) J Power Sources 158:1431–1435CrossRefGoogle Scholar
  16. 16.
    Phadhi K, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188CrossRefGoogle Scholar
  17. 17.
    Bramnik NN, Bramnik KG, Buhrmester T, Baehtz C, Ehrenberg H, Fuess H (2004) J Solid State Eletrochem 8:558–564Google Scholar
  18. 18.
    Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Lebacq O, Pasturel A, Jobic S (2004) J Phys Chem Solids 65:229–233CrossRefGoogle Scholar
  19. 19.
    Shi S, Liu L, Ouyang C, Wang D-S, Wang Z, Chen L, Huang X (2003) Phys Rev B 68:195108CrossRefGoogle Scholar
  20. 20.
    Wang GX, Bewaly SL, Konstantino K, Liu HK, Dou SX, Ahn J-H (2004) Electrochim Acta 50:443CrossRefGoogle Scholar
  21. 21.
    Wolfenstine J, Read J, Allen JL (2007) J Power Sources 163:1070–1073CrossRefGoogle Scholar
  22. 22.
    Herle PS, Ellis B, Coombs N, Nazar NF (2004) Nat Matter Lett 3:147CrossRefGoogle Scholar
  23. 23.
    Piana M, Cushing BL, Goodenough JB, Penazzi N (2004) Solid State Ion 175:233–237CrossRefGoogle Scholar
  24. 24.
    Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908–915CrossRefGoogle Scholar
  25. 25.
    Liu Jun, Conry ThomasE, Song Xiangyun, Yang Li, Doeff MarcaM, Richardson ThomasJ (2011) J Mater Chem 21:9984–9987CrossRefGoogle Scholar
  26. 26.
    Fuertes AB, Sevilla M, Valdes-Solis T, Tartaj P (2007) Chem Mater 19:5418–5423CrossRefGoogle Scholar
  27. 27.
    Kubota S, Nishikiori H, Tanaka N, Endo M, Fujii T (2005) J Phys Chem B 109:23170–23174CrossRefGoogle Scholar
  28. 28.
    Liu D-M, Troczynski T, Tseng WJ (2001) Biomaterials 22:1721–1730CrossRefGoogle Scholar
  29. 29.
    Roisnel T, Rodriguez-Carvajal J (2001) Mater Sci Forum 378–381:118–123CrossRefGoogle Scholar
  30. 30.
    Westheimer FH, Huang S, Covitz F (1988) J Am Chem Soc 110:181–185CrossRefGoogle Scholar
  31. 31.
    Thackeray M, Baker S, Adendorff K, Goodenough JB (1985) Solid State Ion 17:175CrossRefGoogle Scholar
  32. 32.
    Ehrenberg H, Bramnik NN, Senyshyn A, Fuess H (2009) Solid State Sci 11:18–23CrossRefGoogle Scholar
  33. 33.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Angelina Sarapulova
    • 1
  • Daria Mikhailova
    • 1
    • 2
  • Ljubomira Ana Schmitt
    • 2
  • Steffen Oswald
    • 1
  • Natalia Bramnik
    • 2
  • Helmut Ehrenberg
    • 1
    • 2
    • 3
  1. 1.Institute for Complex Materials, IFW DresdenDresdenGermany
  2. 2.Institute for Materials Science, Darmstadt University of TechnologyDarmstadtGermany
  3. 3.Karlsruhe Institute of Technology (KIT), Institute for Applied Materials (IAM)Eggenstein-LeopoldshafenGermany

Personalised recommendations