Journal of Sol-Gel Science and Technology

, Volume 62, Issue 1, pp 24–30 | Cite as

Antireflective sol–gel TiO2 thin films for single crystal silicon and textured polycrystal silicon

  • N. H. ArabiEmail author
  • A. Iratni
  • H. El Hamzaoui
  • B. Capoen
  • M. Bouazaoui
  • M. Halbwax
  • J. P. Vilcot
  • S. Bastide
Original Paper


In this paper, antireflective TiO2 thin films have been prepared on single crystal silicon, and textured polycrystal silicon by sol–gel route using the dip-coating technique. The thickness and the refractive index of the films have been optimised to obtain low reflexion in the visible region, by controlling both the concentration of the titanium isopropoxide (Ti(iOPr)4), and the annealing temperature. We showed that the use of a TiO2 single layer with a thickness of 64.5 nm, heat-treated at 450 or 300 °C, reduces the reflection on single crystal silicon at a level lower than 3% over the broadband spectral ranges 670–830 nm and 790–1010 nm, respectively. In order to broaden the spectral minimum reflectance as much as possible, we have proposed to texture polycrystal silicon wafers, and to coat these wafers by a TiO2 single layer with a thickness of 73.4 nm. In this case, the reflectance has been reduced from 27 to 13% in the spectral range 460–1000 nm.


Thin film Antireflective properties Dip-coating Textured polycrystal silicon Single crystal silicon Titanium oxide 


  1. 1.
    Richards S (2003) Sol Energy Mater solar Cells 79:369–390CrossRefGoogle Scholar
  2. 2.
    Hou Y, Zhuang D-M, Zhang G, Zhao M, Wu M-S (2003) Appl Surf Sci 218:97–105CrossRefGoogle Scholar
  3. 3.
    Aidla T, Uustare A, Kiisler A, Aarik J, Sammelselg V (1997) Thin solid Films 305:270CrossRefGoogle Scholar
  4. 4.
    Choi Y, Yamamoto S, Umebayashi T, Yoshikawa M (2004) solid State Ion 172:105–108CrossRefGoogle Scholar
  5. 5.
    Chrysicopoulou P, Davazoglou D, Trapalis C, Kordas G (1998) Thin solid Films 323:188–193CrossRefGoogle Scholar
  6. 6.
    Hu L, Yoko T, Kozuka H, Sakka S (1992) Thin solid Films 219:18–23CrossRefGoogle Scholar
  7. 7.
    San Vicente G, Morales A, Gutierrez MT (2001) Thin solid Films 391:133–137CrossRefGoogle Scholar
  8. 8.
    San Vicente G, Morales A, Gutierrez MT (2002) Thin solid Films 403:335–338CrossRefGoogle Scholar
  9. 9.
    Chartier C, Bastide S, Levy-Clément C (2008) Electrochim Acta 53:5509–5516CrossRefGoogle Scholar
  10. 10.
    Ahn YU, Kim EJ, Kim HT, Hahn SH (2003) Mater Lett 57:4660–4666CrossRefGoogle Scholar
  11. 11.
    Kesmez O, Erdem Camurlu H, Burunkaya E, Arpaç E (2009) Sol Energy Mater sol Cells 93:1833–1839CrossRefGoogle Scholar
  12. 12.
    Born M, Wolf E (1993) Principles of optics. Pergamon Press, OxfordGoogle Scholar
  13. 13.
    Bouhafs D, Moussi A, Chikouche A, Ruiz JM (1998) sol Energy Mater sol Cells 52:79–93CrossRefGoogle Scholar
  14. 14.
    Marques FC (1998) IEEE Trans Electron Device 45:619CrossRefGoogle Scholar
  15. 15.
    Lien SY, Wuu D-S et al (2006) sol Energy Mater sol Cells 90:2710–2719CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. H. Arabi
    • 1
    Email author
  • A. Iratni
    • 1
  • H. El Hamzaoui
    • 2
  • B. Capoen
    • 2
  • M. Bouazaoui
    • 2
  • M. Halbwax
    • 3
  • J. P. Vilcot
    • 3
  • S. Bastide
    • 4
  1. 1.LMMC LaboratoryUMBB UniversityBoumerdesAlgeria
  2. 2.PhLAM LaboratoryLille 1 UniversityVilleneuve d’Ascq CedexFrance
  3. 3.IEMN, CNRS UMR 8520Villeneuve d’Ascq CedexFrance
  4. 4.ICMPE, CNRS UMR 7182ThiaisFrance

Personalised recommendations