Journal of Sol-Gel Science and Technology

, Volume 61, Issue 3, pp 455–462 | Cite as

Sol–gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system

  • Corine Tourne-Peteilh
  • Sylvie Begu
  • Dan A. Lerner
  • Anne Galarneau
  • Ugo Lafont
  • Jean-Marie Devoisselle
Article

Abstract

The present work reveals a new and simple strategy, a one-step sol–gel procedure, to encapsulate a low water-soluble drug in silica mesostructured microparticles and to improve its release in physiological media. The synthesis of these new materials is based on the efficient solubilisation of a poorly water-soluble drug in surfactant micelles (Tween 80, a pharmaceutical excipient) which act as template for the silica network. A strict control of the sol–gel process and the parameters procedure in soft conditions (concentration, pH, temperature) was applied to reach the solubilisation limit of the drug in the micellar solution so as to optimise its encapsulation. Even if this one-pot procedure could appear limited by the low drug loading, it could provide an interesting alternative for the formulation of many recent highly active but very poorly soluble drugs.

Keywords

Drug delivery Sol–gel Templating Ibuprofen Tween 80 

Supplementary material

10971_2011_2646_MOESM1_ESM.pdf (572 kb)
Supplementary material 1 (PDF 571 kb)

References

  1. 1.
    Hörter D, Dressman JB (2010) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Del Rev 46:75–87CrossRefGoogle Scholar
  2. 2.
    Liu R (2008) Water-insoluble drug formulation. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  3. 3.
    Aiello R, Cavallaro G, Giammona G, Pasqua L, Pierro P, Testa F (2002) Mesoporous silicate as matrix for drug delivery systems of non-steroidal anti-inflammatory drugs. Stud Surf Sci Catal 142:1165–1172CrossRefGoogle Scholar
  4. 4.
    Anderson J, Rosenholm J, Areva S, Linden M (2004) Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem Mater 16:4160–4167CrossRefGoogle Scholar
  5. 5.
    Charnay C, Begu S, Tourne-Peteilh C, Nicole L, Lerner DA, Devoisselle J-M (2004) Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm 57:533–540CrossRefGoogle Scholar
  6. 6.
    Tourne-Peteilh C, Brunel D, Begu S, Chiche B, Fajula F, Lerner DA, Devoisselle J-M (2003) Synthesis and characterisation of ibuprofen-anchored MCM-41 silica and silica gel. New J Chem 3:281–286Google Scholar
  7. 7.
    Tourne-Peteilh C, Lerner DA, Charnay C, Nicole L, Bégu S, Devoisselle J-M (2003) The potential of ordered mesoporous for the storage of drugs : the example of a pentapeptide encapsulated in a MSU-Tween 80. Chem Phys Chem 3:281–286CrossRefGoogle Scholar
  8. 8.
    Vallet-Regi M, Ramila A, del Real RP, Perez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13:308–311CrossRefGoogle Scholar
  9. 9.
    Vallet-Regi M, Balas F, Colilla M, Manzano M (2007) Bioceramics and pharmaceuticals: a remarkable synergy. Solid State Sci 9:768–776CrossRefGoogle Scholar
  10. 10.
    Azaïs T, Tourné-Péteilh C, Aussenac F, Baccile N, Coelho C, Devoisselle J-M, Babonneau F (2006) Solid-state NMR study of ibuprofen confined in MCM-41 material. Chem Mater 18:6382–6390CrossRefGoogle Scholar
  11. 11.
    Heikkilä T, Salonen J, Tuura J, Hamdy MS, Mul G, Kumar N, Salmi T, Murzin DY, Laitinen L, Kaukonen AM, Hirvonen J, Lehto V-P (2007) Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 331:133–138CrossRefGoogle Scholar
  12. 12.
    Impurities: guideline for residual solvents (2009) In London–UK, European Medicines Agency, 22Google Scholar
  13. 13.
    Unger K, Rupprecht H, Valentin B, Kircher W (1983) The use of porous and surface modified silicas as drug delivery and stabilizing agents. Drug Dev Ind Pharm 9:69–91CrossRefGoogle Scholar
  14. 14.
    Kortesuo P, Ahola M, Karlsson S, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) Silica xerogel as an implantable carrier for controlled drug delivery–evaluation of drug distribution and tissue effects after implantation. Biomaterials 21:193–198CrossRefGoogle Scholar
  15. 15.
    Kortesuo P, Ahola M, Kangas M, Kangasniemi I, Yli-Urpo A, Kiesvaara J (2000) In vitro evaluation of sol–gel processed spray dried sillica gel microsphères as carrier in controlled drug delivery. Int J Pharm 200:223–229CrossRefGoogle Scholar
  16. 16.
    Ahola M, Säilynoja E, Raitavuo M, Vaahtio M, Salonen J, Yli-Urpo A (2001) In vitro release of heparin from silica xerogels. Biomaterials 22:2163–2170CrossRefGoogle Scholar
  17. 17.
    Fatnassi M, Tourne-Peteilh C, Cacciaguerra T, Dieudonné P, Devoisselle J-M, Alonso B (2010) Tuning nanophase separation and drug delivery kinetics through spray drying and self-assembly. New J Chem 34:607–610CrossRefGoogle Scholar
  18. 18.
    Rowe RC, Sheskey PJ, Owen SC (2006) Handbook of pharmaceutical excipients, 5th edn., Pharmaceutical Press, LondonGoogle Scholar
  19. 19.
    Boissière C, Larbot A, Van der Lee A, Kooyman PJ, Prouzet E (2000) A new synthesis of mesoporous MSU-X silica controlled by a two-step pathway. Chem Mater 12:2902–2913CrossRefGoogle Scholar
  20. 20.
    Broekhoff JCP, de Boer JH (1968) Studies on pore systems in catalysts–chap. XIII. J Catal 10:377–390CrossRefGoogle Scholar
  21. 21.
    Galarneau A, Desplantier D, Dutartre R, Di Renzo F (1999) Micelle-templated silicates as a test bed for methods of mesopore size evaluation. Microporous Mesoporous Mater 27:297–308CrossRefGoogle Scholar
  22. 22.
    US Pharmacopeia and national formulary (1999)Google Scholar
  23. 23.
    Costa P, Sousa Lobo JM (2001) Modeling and comparison of dissolution profiles. Eur J Pharm Biopharm 13:123–133Google Scholar
  24. 24.
    Gerakis AM, Koupparis MA, Efstathiou CE (1993) Micellar acid-base potentiometric titrations of weak acidic and/or insoluble drugs. J Pharm Biomed Anal 11:33–41CrossRefGoogle Scholar
  25. 25.
    Schachter DM, Xiong J, Tirol GC (2004) Solid state NMR perspective of drug–polymer solid solutions: a model system based on poly (ethylene oxide). Int J Pharm 281:89–101CrossRefGoogle Scholar
  26. 26.
    Attwood D, Florence AT (1985) Surfactant systems—their chemistry, pharmacy and biology, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  27. 27.
    Bass JD, Grosso D, Boissiere C, Belamie E, Coradin T, Sanchez C (2007) Stability of mesoporous oxide and mixed metal oxide materials under biologically relevant conditions. Chem Mater 19:4349–4356CrossRefGoogle Scholar
  28. 28.
    Begu S, Aubert Pouëssel A, Lerner DA, Tourne-Peteilh C, Devoisselle J-M (2007) Liposil, a promising composite material for drug storage and release. J Control Release 118:1–6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Corine Tourne-Peteilh
    • 1
  • Sylvie Begu
    • 1
  • Dan A. Lerner
    • 1
  • Anne Galarneau
    • 1
  • Ugo Lafont
    • 2
  • Jean-Marie Devoisselle
    • 1
  1. 1.Institut Charles Gerhardt MontpellierUMR 5253 CNRS-UM2-ENSCM-UM1Montpellier Cedex 5France
  2. 2.Nanostructured Materials, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations