Journal of Sol-Gel Science and Technology

, Volume 61, Issue 1, pp 197–205 | Cite as

The growth kinetics of colloidal ZnO nanoparticles in alcohols

  • Bożena SikoraEmail author
  • Krzysztof Fronc
  • Izabela Kaminska
  • Anna Baranowska-Korczyc
  • Kamil Sobczak
  • Piotr Dłużewski
  • Danek Elbaum
Original paper


We have studied the synthesis of ZnO nanostructures over a wide range of parameters to determine the kinetics of the nanocrystals growth. The initial rapid nucleation and growth is kinetically controlled, the subsequent ZnO nanocrystals growth is thermodynamically controlled through the diffusion limited Ostwald coarsening. The ZnO coarsening rates increased with number of alcohol’s alkyl group carbons and temperature increase, pointing to importance of the solvent viscosity, dielectric constants, surface energy and the bulk solubility. The results are consistent with the Lifshitz–Slyozov–Wagner model. For all alcohols, in the NaOH induced reaction, a lower activation energy was observed compared to the aqueous reaction. A lower ZnO solubility, obtained by the water synthesis could be responsible for these observations. Our results point to the importance of the reactant selection in controlling the kinetics of the nanostructure formation, their size and the nature of the surface defects responsible for their luminescence.


Zinc oxide Nanoparticles Nanocrystals Colloids Sol–gel Kinetics 



This work has been supported by grants NN 518 424036, from the Ministry of Science and Higher Education and Innovative Economy POIG.01.02-00-008/08.


  1. 1.
    Provenzale JM, Silva GA (2009) Am J Neuroradiol 30:1293–1301CrossRefGoogle Scholar
  2. 2.
    Ostrovsky S, Kazimirsky G, Gedanhen A, Brodie C (2009) Nano Res 2:882–890CrossRefGoogle Scholar
  3. 3.
    Ozgur U, Alivov YI, Liu C, Teke A, Rashchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc HJ (2005) Appl Phys 98:041301CrossRefGoogle Scholar
  4. 4.
    Norberg NS, Gamelin DR (2005) J Phys Chem B 109:20810–20816CrossRefGoogle Scholar
  5. 5.
    van Dijken A, Meulenkamp E, Vanmaekelbergh D, Meijerink A (2000) J Limin 90:123–128CrossRefGoogle Scholar
  6. 6.
    Maulenkamp EA (1998) J Phys Chem B 102:7764–7769CrossRefGoogle Scholar
  7. 7.
    Maulenkamp EA (1998) J Phys Chem B 102:5566–5572CrossRefGoogle Scholar
  8. 8.
    Monticone S, Tufeu R, Kanaev AV (1998) J Phys Chem B 102:2854–2862CrossRefGoogle Scholar
  9. 9.
    Sakohara S, Ishida M, Anderson MA (1998) J Phys Chem B 102:10169–10175CrossRefGoogle Scholar
  10. 10.
    Hu Z, Herrera Santos JF, Oskam G, Searson PC (2005) J Colloid Interf Sci 288:313–316CrossRefGoogle Scholar
  11. 11.
    Viswanatha R, Santra PK, Dasgupta C, Sarma DD (2007) PRL 98:255501-1–255501-4CrossRefGoogle Scholar
  12. 12.
    Zhang H, Liu Y, Wang C, Zhang J, Sun H, Li M, Yang B (2008) ChemPhysChem 9:1309–1316CrossRefGoogle Scholar
  13. 13.
    Han J, Luo X, Zhou D, Sun H, Zhang H, Yang Han B (2010) J Phys Chem C 114:6418–6425CrossRefGoogle Scholar
  14. 14.
    Brus LE (1986) J Phys Chem 90:2555–2560CrossRefGoogle Scholar
  15. 15.
    Hu Z, Oskam G, Searson PC (2003) J Colloid Interf Sci 263:454–460CrossRefGoogle Scholar
  16. 16.
    Hu Z, Oskam G, Penn RL, Pesika N, Searson PC (2003) J Phys Chem 107:3124–3130CrossRefGoogle Scholar
  17. 17.
    Wong EM, Bonevich JE, Searson PC (1998) J Phys Chem B 10:7770–7775CrossRefGoogle Scholar
  18. 18.
    Wang Y, Herron N (1990) Phys Rev B 42:7253–7255CrossRefGoogle Scholar
  19. 19.
    Lippens PE, Lannoo M (1989) Phys Rev B 39:10935–10942CrossRefGoogle Scholar
  20. 20.
    Wang Y, Herron N (1991) J Phys Chem 95:525–532CrossRefGoogle Scholar
  21. 21.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35–50CrossRefGoogle Scholar
  22. 22.
    Wagner C (1961) Z Elektrochem 65:581–591Google Scholar
  23. 23.
    Viswanatha R, Amenitsch H, Sarma DD (2007) J Am Chem Soc 129(14):4470–4475CrossRefGoogle Scholar
  24. 24.
    Lide DR (2006) Handbook of chemistry and physics. Taylor and Francis Group, LLCGoogle Scholar
  25. 25.
    Yaroslavov AA, Sinani VA, Efimova AA, Yaroslavova EG, Rakhnyanskaya AA, Ermakov YA, Kotov NA (2005) J Am Chem Soc 127(20):7322–7323CrossRefGoogle Scholar
  26. 26.
    Hu Z, Escamilla Ramírez DJ, Heredia Cervera BE, Oskam G, Searson PC (2005) J Phys Chem B 109:11209–11214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bożena Sikora
    • 1
    Email author
  • Krzysztof Fronc
    • 1
  • Izabela Kaminska
    • 1
  • Anna Baranowska-Korczyc
    • 1
  • Kamil Sobczak
    • 1
  • Piotr Dłużewski
    • 1
  • Danek Elbaum
    • 1
  1. 1.Institute of Physics, Polish Academy of SciencesWarsawPoland

Personalised recommendations