Journal of Sol-Gel Science and Technology

, Volume 61, Issue 1, pp 1–7 | Cite as

Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study

  • Rosendo López
  • Ricardo GómezEmail author
Original Paper


A comparison of the band gap energy estimated from UV–vis reflectance spectra of TiO2 powders prepared by sol–gel route versus commercial TiO2 powders, nanopowder, bulkpowder and P25 is reported. The experimental results obtained from the optical absorption spectra were reported for all the TiO2 samples. Graphic representations were used to calculate Eg: absorbance versus λ; F(R) versus E; (F(R) )n versus E, with n = ½ for an indirect allowed transition and n = 2 for a direct allowed transition. From the results, it could be seen that Eg strongly varied according to the equation used for the graphic representation. Differences in Eg up to 0.5 eV for the same semiconductor depending on the transition chosen were observed. Accurate Eg estimation in the four semiconductors studied was obtained by using the general equation α () ≈ B ( − Eg)n (where α ~ F(R)) and indirect allowed transition.


Titanium dioxide semiconductor Band gap calculation Titanium dioxide electronic transitions Kubelka–Munk method 



We thank to CONACYT for the CB-2006-1-62053 grant relative to: “Preparation of semiconductors by the sol–gel method”. R. López acknowledges to CONACYT fellowship.


  1. 1.
    Galindo F, Gómez R (2009) J Nano Res 5:87CrossRefGoogle Scholar
  2. 2.
    Galindo F, Gómez R, Del Ángel G, Guzmán C (2008) J Ceram Process Res 9:616Google Scholar
  3. 3.
    López R, Gómez R, Llanos ME (2009) Catal Today 148:103CrossRefGoogle Scholar
  4. 4.
    Daude N, Gout C, Jouanin C (1977) Phys Rev B 15:3229CrossRefGoogle Scholar
  5. 5.
    Serpone N, Lawless D, Khairutdinov R (1995) J Phys Chem 99:16646CrossRefGoogle Scholar
  6. 6.
    Qiang C, Hong–Hong C (2004) Chin Phys Soc 13:2121CrossRefGoogle Scholar
  7. 7.
    Sze SM, Kwok K (2007) Physics of semiconductor devices, 3rd edn. Wiley, LondonGoogle Scholar
  8. 8.
    Marshall ED, Murakami M (1993) In: Brillson LJ (ed) Contacts to semiconductors: fundamentals and technology. Noyes publications, New JerseyGoogle Scholar
  9. 9.
    Schiavello M (1998) Heterogeneous photocatalysis. Wiley series in photoscience and photoengineering, New YorkGoogle Scholar
  10. 10.
    Tandon SP, Gupta JP (1970) Phys Stat Sol 38:363CrossRefGoogle Scholar
  11. 11.
    Fosch PD (1956) Proc Phys Soc B 69:70Google Scholar
  12. 12.
    Shapiro IP (1958) Opt Spektrosk 4:256Google Scholar
  13. 13.
    Lewis NS, Rosenbluth ML (1989) In: Serpone N, Pelizzetti E (eds) Photocatalysis: fundamentals and applications. Wiley-Interscience, LondonGoogle Scholar
  14. 14.
    Pankove JI (1975) Optical processes in semiconductors. Dover, New YorkGoogle Scholar
  15. 15.
    Candal RJ, Bilmes SA, Blesa MA (2001) Eliminación de contaminantes por Fotocatálisis Heterogénea, Texto colectivo elaborado por la Red CYTED VIII-G, MadridGoogle Scholar
  16. 16.
    Lynch DW (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 1. Academic Press, London, p 197Google Scholar
  17. 17.
    Apell P, Hunderi O (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 2. Academic Press, London, p 111Google Scholar
  18. 18.
    Forouhi AR, Bloomer I (1998) In: Palik ED (ed) Handbook of optical constants of solids, vol 2. Academic Press, London, p 163Google Scholar
  19. 19.
    Gray JL (2003) In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, LondonGoogle Scholar
  20. 20.
    Amirtharaj PM, Seiler DG (1995) In: Bass M (ed) Handbook of optics, volume ii—devices, measurements, and properties. McGraw-Hill, New YorkGoogle Scholar
  21. 21.
    Miller A (1995) In: Bass M (ed) Handbook of optics, volume i—fundamentals, techniques and design. McGraw-Hill, New YorkGoogle Scholar
  22. 22.
    Kubelka P, Munk F (1931) Z Tech Phys 12:593Google Scholar
  23. 23.
    Kubelka P (1948) J Opt Soc Am 38:448CrossRefGoogle Scholar
  24. 24.
    Murphy AB (2007) Sol Energy Mater Sol Cells 91:1326CrossRefGoogle Scholar
  25. 25.
    Yang L, Kruse B (2004) J Opt Soc Am A 21:1933CrossRefGoogle Scholar
  26. 26.
    Yang L, Kruse B, Miklavcic SJ (2004) J Opt Soc Am A 21:1942CrossRefGoogle Scholar
  27. 27.
    Yang L, Miklavcic SJ (2005) J Opt Soc Am A 22:1866CrossRefGoogle Scholar
  28. 28.
    Kokhanovsky AA (2007) J Phys D Appl Phys 40:2210CrossRefGoogle Scholar
  29. 29.
    Edström P (2007) J Opt Soc Am A 24:548CrossRefGoogle Scholar
  30. 30.
    Yang L, Miklavcic SJ, Kruse B (2007) J Opt Soc Am A 24:557CrossRefGoogle Scholar
  31. 31.
    Khan SUM, Al-Shahry M, Ingler WB (2002) Science 297:2243CrossRefGoogle Scholar
  32. 32.
    Yang J, Bai H, Tan X, Lian J (2006) Appl Surf Sci 253:1988CrossRefGoogle Scholar
  33. 33.
    He C, Li XZ, Graham N, Wang Y (2006) Appl Catal A 305:54CrossRefGoogle Scholar
  34. 34.
    Graf C, Ohser-Wiedemann R, Kreisel G (2007) J Photochem Photobiol A 188:226CrossRefGoogle Scholar
  35. 35.
    Gómez R, López T, Ortiz-Islas E, Navarrete J, Sánchez E, Tzompanztzi F, Bokhimi X (2003) J Mol Catal A Chem 193:217CrossRefGoogle Scholar
  36. 36.
    López T, Hernandez-Ventura J, Gómez R, Tzompantzi F, Sánchez E, Bokhimi X, García A (2001) J Mol Catal A Chem 167:101CrossRefGoogle Scholar
  37. 37.
    Tang H, Prasad K, Sanjines R, Schmid PE, Lévy F (1994) J Appl Phys 75:2042CrossRefGoogle Scholar
  38. 38.
    Fan X, Yu T, Zhang L, Chen X, Zou Z (2007) J Chem Phys 20:733Google Scholar
  39. 39.
    Sudhagar P, Sathyamoorthy R, Chandramohan S (2008) Appl Surf Sci 254:1919CrossRefGoogle Scholar
  40. 40.
    Chung J, Chen J, Tseng C (2008) J Phys Chem Solids 69:535CrossRefGoogle Scholar
  41. 41.
    Akl AA, Kamal H, Abdel-Hady K (2006) Appl Surf Sci 252:8651CrossRefGoogle Scholar
  42. 42.
    Reddy KM, Manorama SV, Reddy AR (2002) Mater Chem Phys 78:239CrossRefGoogle Scholar
  43. 43.
    Kumar P, Malhotra LK (2004) Electrochim Acta 49:3355CrossRefGoogle Scholar
  44. 44.
    Lekha PC, Subramanian E, Padiyan DP (2007) Sens Actuators B 122:274CrossRefGoogle Scholar
  45. 45.
    Herman D, Sicha J, Musil J (2006) Vacuum 81:285CrossRefGoogle Scholar
  46. 46.
    Simpson JR, Drew HD (2004) Phys Rev B 69:193205CrossRefGoogle Scholar
  47. 47.
    Miao L, Jin P, Kaneko K, Terai A, Nabatova-Gabain N, Tanemura S (2003) Appl Surf Sci 212:255CrossRefGoogle Scholar
  48. 48.
    Beke S, Giorgio S, Kőrösi L, Nánai L, Marine W (2007) Thin Solid Films 516:4659CrossRefGoogle Scholar
  49. 49.
    Yeredla RR, Xu H (2008) Nanotechnology 19:055706CrossRefGoogle Scholar
  50. 50.
    Lin H, Huang CP, Li W, Ni C, Ismat Shah S, Tseng Y (2006) Appl Catal B 68:1CrossRefGoogle Scholar
  51. 51.
    Aguado J, Van Grieten R, López MJ, Marugán J (2006) Appl Catal A 312:202CrossRefGoogle Scholar
  52. 52.
    Tauc J, Grigorovici R, Vancu A (1966) Phys Stat Sol 15:627CrossRefGoogle Scholar
  53. 53.
    Sakthivel S, Hidalgo MC, Bahnemann DW, Geissen SU, Murugesan V, Vogelpohl A (2006) Appl Catal B 63:31CrossRefGoogle Scholar
  54. 54.
    Yu X, Shenhua X, Zhaoyuan N, Jun C, Xinhua L, Suliu X, Song H, Wei D, Shanhua C (2004) Plasma Sci Technol 6:2337CrossRefGoogle Scholar
  55. 55.
    Yamaguchi M, Ogihara C, Morigaki K (2003) Mater Sci Eng B 97:135CrossRefGoogle Scholar
  56. 56.
    Sinha D, Phukan T, Tripathy SP, Mishra R, Dwivedi KK (2001) Radiat Meas 34:109CrossRefGoogle Scholar
  57. 57.
    Miao B, Hong J, Chen P, Yuan X, Han M, Wang G (1997) J Phys Condens Matter 9:10985CrossRefGoogle Scholar
  58. 58.
    Zhou W, Xie S, Qian S, Wang G, Qian L, Sun L, Tang D, Liu Z (2000) J Phys Chem Solids 61:1165CrossRefGoogle Scholar
  59. 59.
    Lee S, Shin DW, Kim WM, Cheong B, Lee T, Lee KS, Cho S (2006) Thin Solid Films 514:296CrossRefGoogle Scholar
  60. 60.
    Chatterjee S (2008) J Phys D Appl Phys 41:055301CrossRefGoogle Scholar
  61. 61.
    Stengl V, Bakardjieva S, Murafa N, Houskova V, Lang K (2008) Micropor Mesopor Mater 110:370CrossRefGoogle Scholar
  62. 62.
    Ryu SY, Balcerski W, Lee TK, Hoffmann MR (2007) J Phys Chem C 111:18195CrossRefGoogle Scholar
  63. 63.
    Zaghib K, Mauger A, Goodenough JB, Gendron F, Julien CM (2007) Chem Mater 19:3740CrossRefGoogle Scholar
  64. 64.
    Li Q, Xie R, Li YW, Mintz EA, Shang JK (2007) Environ Sci Technol 41:5050CrossRefGoogle Scholar
  65. 65.
    Miao L, Tanemura S, Watanabe H, Mori Y, Kaneko K, Toh S (2004) J Cryst Growth 260:118CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Grupo ECOCATAL, Área de Catálisis, Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexicoMexico

Personalised recommendations