TiO2 nanofibers embedding single crystalline TiO2 nanowires

  • So-Eun Kim
  • Youngjong Kang
  • Shiao-Wei Kuo
  • Changwoon Nah
  • Kwang-Un Jeong
Original paper


Epitaxially grown titanium dioxide (TiO2) nanofibers embedding single crystalline TiO2 nanowires (NWs) were successfully fabricated by electropinning poly(vinyl pyrrolidone)/ethanol solutions mixed with hydrothermally synthesized TiO2 NWs and titanium isopropoxide precursors and subsequently calcinating the electrospun nanofibers. Utilizing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the morphologies of TiO2 NWs and nanofibers were investigated. High resolution TEM (HR-TEM) and selected area electron diffraction (SAED) allowed us to indentify the fact that, during the calcination process under the optimized condition, titanium isopropoxide precursors were epitaxially crystallized on the surface of single crystalline TiO2 NWs. Based on the X-ray diffraction (XRD) experiments, it was also realized that the crystalline structure of hydrothermally synthesized TiO2 NWs and epitaxially crystallized TiO2 nanofibers is anatase and that TiO2 composite nanofibers embedding TiO2 NWs exhibited a higher crystallinity than the pristine TiO2 nanofibers. Additionally, ultraviolet visible (UV–Vis) spectra of nanofibers indicated that optical properties of TiO2 nanofibers can be tuned by introducing the single crystalline TiO2 NWs.


Epitaxial growth TiO2 nanofiber TiO2 nanowire Red shift Blue shift 



This research has been supported by Basic Science Research Program (NRF-1103000280) and Converging Research Center Program (2011K000776) from the Korean government.


  1. 1.
    Pfaff G, Reynders P (1999) Chem Rev 99:1963CrossRefGoogle Scholar
  2. 2.
    Yuan SA, Chen WH, Hu SS (2005) Mater Sci Eng C 25:479CrossRefGoogle Scholar
  3. 3.
    Buchalska M, Kras G, Oszajca M, Lasocha W, Macyk W (2010) J Photochem Photobiol A Chem 213:158CrossRefGoogle Scholar
  4. 4.
    Rams J, Tejeda A, Cabrera JM (1997) J Appl Phys 82:994CrossRefGoogle Scholar
  5. 5.
    Cao T, Li Y, Wang C, Wei L, Shao C, Liu Y (2010) J Sol–Gel Sci Technol 55:105CrossRefGoogle Scholar
  6. 6.
    Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Lei J (2008) J Sol–Gel Sci Technol 46:176CrossRefGoogle Scholar
  7. 7.
    Enyashin AN, Seifert G (2005) Phys Stat Sol (b) 242:1361CrossRefGoogle Scholar
  8. 8.
    O’ Rdagen B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  9. 9.
    Kominami H, Murakami Sy, Kato Ji, Kera Y, Ohtani B (2002) J Phys Chem B 106:10501CrossRefGoogle Scholar
  10. 10.
    Zhu Y, Shi J, Zhang Z, Zhang C, Zhang X (2002) Anal Chem 74:120CrossRefGoogle Scholar
  11. 11.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefGoogle Scholar
  12. 12.
    Tarascon JM, Armand M (2001) Nature 414:359CrossRefGoogle Scholar
  13. 13.
    Wen BM, Liu CY, Liu Y (2005) New J Chem 29:969CrossRefGoogle Scholar
  14. 14.
    Masuda Y, Kato K (2008) Cryst Growth Des 8:3213CrossRefGoogle Scholar
  15. 15.
    Tian ZR, Voight JA, Liu J, Mckenzie B, Xu H (2003) J Am Chem Soc 125:12384CrossRefGoogle Scholar
  16. 16.
    Chen WS, Huang DA, Chen HC, Shin TY, Hsieh CH, Liao JD, Kuo C (2009) Cryst Growth Des 9:4070CrossRefGoogle Scholar
  17. 17.
    Chi B, Jin T (2007) Cryst Growth Des 7:815CrossRefGoogle Scholar
  18. 18.
    Kumar A, Jose R, Fujihara K, Wang J, Ramakrishna S (2007) Chem Mater 19:6536CrossRefGoogle Scholar
  19. 19.
    Demir MM, Gulgun MA, Menceloglu YZ, Erman B, Abramchuk SS, Makhaeva EE, Khokhov AR, Matveeva VG, Sulman MG (2004) Macromolecules 37:1787CrossRefGoogle Scholar
  20. 20.
    Matsui T, Harada M, Ichihashi Y, Bando KK, Matsubayashi N, Toba M, Yoshimura Y (2005) Appl Catal A 286:249CrossRefGoogle Scholar
  21. 21.
    Zhang YX, Li GH, Jin YX, Zhang Y, Zhang J, Zhang LD (2002) Chem Phys Lett 365:300CrossRefGoogle Scholar
  22. 22.
    Zhou F, Zhao X, Yuan C, Li L (2008) Cryst Growth Des 8:723CrossRefGoogle Scholar
  23. 23.
    Wu JJ, Yu CC (2004) J Phys Chem B 108:3377CrossRefGoogle Scholar
  24. 24.
    Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Solid State Commun 136:513CrossRefGoogle Scholar
  25. 25.
    Chen X, Mao SS (2007) Chem Rev 107:2891CrossRefGoogle Scholar
  26. 26.
    Li D, Xia Y (2003) Nano Lett 3:555CrossRefGoogle Scholar
  27. 27.
    Li D, McCann JT, Xia Y (2006) J Am Ceram Soc 89:1861CrossRefGoogle Scholar
  28. 28.
    Park SJ, Chase GG, Jeong KU, Kim HY (2010) J Sol–Gel Sci Technol 54:188CrossRefGoogle Scholar
  29. 29.
    Lee JH, Lee US, Jeong KU, Seo YA, Park SJ, Kim HY (2010) Polym Int 59:1683CrossRefGoogle Scholar
  30. 30.
    Zhang H, Banfield JF (1998) J Mater Chem 8:2073CrossRefGoogle Scholar
  31. 31.
    Burda C, Lou Y, Chen X, Samia AC, Stout J, Gole JL (2003) Nano Lett 3:1049CrossRefGoogle Scholar
  32. 32.
    Vaclav S, Snejana B, Nataliya M (2009) Mater Chem Phys 114:217CrossRefGoogle Scholar
  33. 33.
    Sasaki T, Watanabe M (1997) J Phys Chem B 101:10159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • So-Eun Kim
    • 1
  • Youngjong Kang
    • 2
  • Shiao-Wei Kuo
    • 3
  • Changwoon Nah
    • 1
  • Kwang-Un Jeong
    • 1
  1. 1.Department of Polymer-Nano Science and Technology, Polymer Materials Fusion Research CenterChonbuk National UniversityJeonjuKorea
  2. 2.Department of Chemistry, Research Institute for Natural Sciences, Institute of Nano Science and TechnologyHanyang UniversitySeongdong Gu, SeoulKorea
  3. 3.Department of Materials and Optoelectronic Science, Center for Nanoscience and NanotechnologyNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations