Journal of Sol-Gel Science and Technology

, Volume 60, Issue 3, pp 299–314 | Cite as

Hybrid organic–inorganic sol–gel materials for micro and nanofabrication

  • Giovanna BrusatinEmail author
  • Gioia Della Giustina
Original Paper


In this review hybrid organic–inorganic (HOI) resists as emerging materials alternative to organic polymers for micro and nanolithography are presented and discussed. In particular, results on sol–gel materials belonging to 3-glycidoxypropyltrimethoxysilane based HOI are presented and reviewed, highlighting as various lithographic techniques can be used to pattern their surface and showing examples of micro- and nano-patterned structures achieved with radiation assisted lithography (UV, X-rays and electron beam) or imprint techniques. It will be demonstrated the particular versatility shown by some of these materials, that in some case can be processed with all the lithographic methods herein considered, without any significant modification of their main composition and synthesis procedure. Moreover, results about the investigation of interaction between radiation and HOI materials and thermal treatment will be discussed, as well as possible synthesis strategies and composition modification developed in order to improve efficiency of curing, tailor HOI properties to specific needs (optical properties, resist composition, mechanical stability, etc.) and explore innovative and non conventional patterning techniques. The reported results highlight as these novel materials, thanks to their solution processability and higher performances respect to commercial polymeric resists, allow to use the above mentioned lithographic techniques in a direct patterning process, strongly simplifying conventional technique and reducing their processing time and costs.


Hybrid organic–inorganic materials Sol–gel Glycidoxypropyltrimethoxysilane Nanoimprinting UV lithography X-rays Electron beam lithography 



The authors gratefully acknowledge support from the University of Padova through the PLATFORMS strategic project “PLAsmonic nano-Textured materials and architectures FOR enhanced Molecular Sensing”—prot. STPD089KSC.


  1. 1.
    Lebeau B, Innocenzi P (2011) Chem Soc Rev 40(2):886–906CrossRefGoogle Scholar
  2. 2.
    Copuroglu M, O’Brien SM, Crean G (2006) Polym Degrad Stab 91:3185–3190CrossRefGoogle Scholar
  3. 3.
    Passinger S, Saifullah MSM, Reinhardt C, Subramanian KRV, Chichkov BN, Welland ME (2007) Adv Mater 19:1218–1221CrossRefGoogle Scholar
  4. 4.
    Briche S, Riassetto D, Gastaldin C, Lamarle C, Dellea O, Jamon D, Pernot E, Labeau M, Ravel G, Langlet M (2008) J Mater Sci 43:5809–5822CrossRefGoogle Scholar
  5. 5.
    Prosposito P, Casalboni M, Orsini E, Palazzesi C, Stella F (2010) Solid State Sci 12:1886–1889CrossRefGoogle Scholar
  6. 6.
    Fukushima M, Yanagi H, Hayashi S, Suganuma N, Taniguchi Y (2003) Thin Solid Films 438/439:39–43CrossRefGoogle Scholar
  7. 7.
    Obi S, Gale MT, Kuoni A, De Rooij N (2004) Microelectron Eng 73/74:157–160CrossRefGoogle Scholar
  8. 8.
    Saifullah MSM, Dae-Joon Kang, Subramanian KRV, Welland ME (2004) J Sol-Gel Sci Technol 29:5–10CrossRefGoogle Scholar
  9. 9.
    Cheong WC, Yuan XC, Koudriacho V, Yu WX (2002) Opt Express 10(14):586Google Scholar
  10. 10.
    Grigorescu AE, Hagen CW (2009) Nanotechnology 20:29CrossRefGoogle Scholar
  11. 11.
    Di Fabrizio E, Romanato F, Cabrini S, Kumar R, Perennes F, Altissimo M, Businaro L, Cojac D, Vaccari L, Prasciolu M, Candeloro P (2004) J Phys 16:33Google Scholar
  12. 12.
    Liang X, Morton KJ, Austin RH, Chou SY (2007) Nano Lett 7(12):3775Google Scholar
  13. 13.
    Rao J, Winfield R, Keeney L (2010) Opt Commun 283:2446–2450CrossRefGoogle Scholar
  14. 14.
    Escarré J, Soderstrom K, Battaglia C, Haug FJ, Ballif C (2011) Sol Energy Mater Sol Cells 95:881–886CrossRefGoogle Scholar
  15. 15.
    Kim KD, Jeong JH, Park SH, Choi DG, Choi JH, Lee ES (2009) Microelectron Eng 86:1983–1988CrossRefGoogle Scholar
  16. 16.
    Buestrich R, Kahlenberg F, Popall M, Dannberg P, Muller-Fiedler R, Rosch O (2001) J Sol–gel Sci Technol 20:181–186CrossRefGoogle Scholar
  17. 17.
    Moujoud A, Saddiki Z, Touam T, Najafi SI (2002) Thin Solid Films 422:161–165CrossRefGoogle Scholar
  18. 18.
    Etienne P, Coudray P, Porque J, Moreau Y (2000) Opt Commun 174:413CrossRefGoogle Scholar
  19. 19.
    Jung JI, Park OH, Bae BS (2003) J Sol-Gel Sci Technol 26:897–901CrossRefGoogle Scholar
  20. 20.
    Coudray P, Etienne P, Moreau Y (2000) Mat Sci In Smicnd Proc 3:331–337CrossRefGoogle Scholar
  21. 21.
    Popall M, Buestrich R, Kahlenberg F, Andersson A (2000) Mater Res Soc Symp Proc 621:CC9.4.1–CC9.4.12Google Scholar
  22. 22.
    Le Guevel X, Palazzesi C, Proposito P, Della Giustina G, Brusatin G (2008) J Mater Chem 18:3556–3562CrossRefGoogle Scholar
  23. 23.
    Jabbour J, Calas-Etienne S, Smaıhi M, Gatti S, Kribich R, Pille G, Moreau Y, Etienne P (2007) Appl Surf Sci 253:8032–8036CrossRefGoogle Scholar
  24. 24.
    O’Brien S, Copuroglu M, Crean GM (2007) Appl Surf Sci 253:7969–7972CrossRefGoogle Scholar
  25. 25.
    Croutxe-Barghorn C, Belon C, Chemtob A (2010) J Photopol Sci Technol 23(1):129–134CrossRefGoogle Scholar
  26. 26.
    Que W, Jia CY, Sun M, Sun Z, Wang LL, Zhang ZJ (2008) Opt Express 16(6):3490–3495CrossRefGoogle Scholar
  27. 27.
    Binh NT, Thanh NT, Trung DT, Huong NT, Minh LQ (2008) J Korean Phys Soc 52(5):1501–1505CrossRefGoogle Scholar
  28. 28.
    Luo X, ZHA C, Luther-Davies B (2005) Opt Mater 27:1461–1466CrossRefGoogle Scholar
  29. 29.
    Que W, Hu X, Zhang QY (2003) Chem Phys Lett 369:354–360CrossRefGoogle Scholar
  30. 30.
    Oubaha M, Copperwhite R, Murphy B, Kolodziejczyk B, Barry H, O’Dwyer K, MacCraith BD (2006) Thin Solid Films 510:334–338CrossRefGoogle Scholar
  31. 31.
    Segawa H, Yamaguchi S, Yamazaki Y, Yano T, Shibata S, Misawa H (2006) Appl Phys A 83:447–451CrossRefGoogle Scholar
  32. 32.
    Segawa H, Tateishi K, Arai Y, Yoshida K, Kaji H (2004) Thin Solid Films 466:48–53CrossRefGoogle Scholar
  33. 33.
    Saifullah MSM, Subramanian KRV, Tapley E, Kang D-J, Welland ME, Butler M (2003) Nano Lett 3(11):1587–1591CrossRefGoogle Scholar
  34. 34.
    Della Giustina G, Prasciolu M, Brusatin G, Guglielmi M, Romanato F (2009) Microelectron Eng 86:745–748CrossRefGoogle Scholar
  35. 35.
    Brigo L, Pistore A, Grenci G, Carpentiero A, Romanato F, Brusatin G (2010) Microelectron Eng 87:947–950CrossRefGoogle Scholar
  36. 36.
    Falcaro P, Malfatti L, Vaccai L, Amenitsch H, Marmiroli B, Grenci G, Innocenzi P (2009) Adv Mater 21:4932–4936CrossRefGoogle Scholar
  37. 37.
    Brusatin G, Della Giustina G, Romanato F, Guglielmi G (2008) Nanotechnology 19:175306CrossRefGoogle Scholar
  38. 38.
    Park HH (2011) Microelectron Eng 88:923–928CrossRefGoogle Scholar
  39. 39.
    Peroz C, Chauveau V, Barthel E, Søndergard E (2009) Adv Mater 21:555–558CrossRefGoogle Scholar
  40. 40.
    Lee TY, Guymon CA, Sonny Jonsson E, Hoyle CE (2004) Polymer 45:6155–6162CrossRefGoogle Scholar
  41. 41.
    Srinivasan S, Lee MW, Grady MC, Soroush M, Rappe AM (2010) J Phys Chem A 114:7975–7983CrossRefGoogle Scholar
  42. 42.
    Della Giustina G, Brusatin G, Guglielmi M, Palazzesi C, Orsini E, Prosposito P (2010) Solid State Sci 12:1890–1893CrossRefGoogle Scholar
  43. 43.
    Crivello JV, Lam JHW (1980) J Polym Sci Polym Chem Ed 18:2697–2714CrossRefGoogle Scholar
  44. 44.
    Della Giustina G, Brusatin G, Guglielmi M, Palazzesi C, Orsini E, Proposito P (2010) Solid State Sci 12:1890–1893CrossRefGoogle Scholar
  45. 45.
    Della Giustina G, Brusatin G, Guglielmi M, Romanato F (2007) Mater Sci Eng C 27:1382–1385CrossRefGoogle Scholar
  46. 46.
    Brusatin G, Della Giustina G, Guglielmi M, Innocenzi P (2006) Prog Solid State Chem 34:223–229CrossRefGoogle Scholar
  47. 47.
    Guglielmi M, Brusatin G, Della Giustina GJ (2007) Non-Cryst Solids 353:1681–1687CrossRefGoogle Scholar
  48. 48.
    Della Giustina G, Zacco G, Zanchetta E, Guglielmi M, Romanato F, Brusatin G (2011) Microelectron Eng 88:1923–1926Google Scholar
  49. 49.
    Buso D, Della Giustina G, Brusatin G, Guglielmi M, Martucci A, Chiasera A, Ferrari M, Romanato F (2009) J Nanosci Nanotechnol 9:1858–1864CrossRefGoogle Scholar
  50. 50.
    Della Giustina G, Guglielmi M, Brusatin G, Prasciolu M, Romanato F (2008) J Sol-Gel Sci Technol 48:212–216CrossRefGoogle Scholar
  51. 51.
    Patsis GP, Glezos N (1999) Microelectron Eng 46:359–363CrossRefGoogle Scholar
  52. 52.
    Foucher J, Pikon A, Andes C, Thackeray J (2007) Proc SPIE 6518:65181QCrossRefGoogle Scholar
  53. 53.
    Balslev S, Romanato F (2005) J Vac Sci Technol B 23(6):1CrossRefGoogle Scholar
  54. 54.
    Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114–3116CrossRefGoogle Scholar
  55. 55.
    Chou SY, Krauss PR, Renstrom PJ (1996) Science 272:85–87CrossRefGoogle Scholar
  56. 56.
    Schmitt H, Rommel M, Bauer AJ, Frey L, Bich A, Eisner M, Voelkel R, Hornung M (2010) Microelectron Eng 87:1074–1076CrossRefGoogle Scholar
  57. 57.
    Ahn AH, Guo LJ (2009) ACS Nano 3(8):2304–2310CrossRefGoogle Scholar
  58. 58.
    Pozzato A, Dal Zilio S, Fois G, Vendramin D, Mistura G, Belotti M, Chen Y, Natali M (2006) Microelectron Eng 83:884–888CrossRefGoogle Scholar
  59. 59.
    Kim WS, Kim KS, Eo YJ, Yoon KB, Bae BS (2005) J Mater Chem 15:465–469CrossRefGoogle Scholar
  60. 60.
    Letailleur A, Teisseire J, Chemin N, Barthel E, Søndergard E (2010) Chem Mater 22:3143–3151CrossRefGoogle Scholar
  61. 61.
    Gale MT, Gimkiewicz C, Obi S, Schnieper M, Sochtig J, Thiele H, Westenhofer S (2005) Opt Lasers Eng 43:373–386CrossRefGoogle Scholar
  62. 62.
    Fortunati I, Gardin S, Todescato F, Signorini R, Bozio R, Jasieniak JJ, Martucci A, Pistore A, Guglielmi M, Prasciolu M, Romanato F (2010) Nonlinear Opt Quantum Opt 41(1):73–86Google Scholar
  63. 63.
    Ye C, Wong KJ, He Y, Wang X (2006) Opt Express 15(3):936CrossRefGoogle Scholar
  64. 64.
    Pisignano D, Persano L, Mele E, Visconti P, Anni M, Gigli G, Cingolani R, Favaretto L, Barbarella G (2005) Synth Met 153:237–240CrossRefGoogle Scholar
  65. 65.
    Dal Zilio S, Della Giustina G, Brusatin G, Tormen M (2010) Microelectron Eng 87:1143–1146CrossRefGoogle Scholar
  66. 66.
    Versace DL, Oubaha M, Copperwhite R, Croutxé-Barghorn C, MacCraith BD (2008) Thin Solid Film 516:6448CrossRefGoogle Scholar
  67. 67.
    Sato N, Nagayama M, Yokoyama Q (2003) J Photopolym Sci Technol 16:679CrossRefGoogle Scholar
  68. 68.
    Goetzberger A, Goldschmidt JC, Peters M, Löper P (2008) Sol Energy Mater Sol Cells 92(12):1570–1578CrossRefGoogle Scholar
  69. 69.
    Dal Zilio S, Tvingstedt K, Inganäs O, Tormen M (2009) Microelectron Eng 86(4–6):1150–1154CrossRefGoogle Scholar
  70. 70.
    Tohge N, Hasegawa M, Noma N, Kintaka K, Nishii J (2003) J Sol-Gel Sci Technol 26:903–907CrossRefGoogle Scholar
  71. 71.
    Li X, Du X, He J (2010) Langmuir 26(16):13528–13534CrossRefGoogle Scholar
  72. 72.
    Zhang X, Ye H, Xiao B, Yan L, Lv H, Jiang B (2010) J Phys Chem C 114(47):19979–19983CrossRefGoogle Scholar
  73. 73.
    Chen D (2001) Sol Energy Mater Sol Cells 68:313–336CrossRefGoogle Scholar
  74. 74.
    Chhajed S, Schubert MF, Kim JK, Schuber EF (2008) Appl Phys Lett 93:101914CrossRefGoogle Scholar
  75. 75.
    Faustini M, Nicole L, Boissiere C, Innocenzi P, Sanchez C, Grosso D (2010) Chem Mater 22:4406–4413CrossRefGoogle Scholar
  76. 76.
    Gardin S, Signorini R, Pistore A, Della Giustina G, Brusatin G, Guglielmi M, Bozio R (2010) J Phys Chem C 114:7646–7652CrossRefGoogle Scholar
  77. 77.
    Gardin S, Della Giustina G, Brusatin G, Signorini R (2011) J Nanosci Nanotechnol 11(1):195–199CrossRefGoogle Scholar
  78. 78.
    Park HH et al (2010) J Mater Chem 20:1921–1926CrossRefGoogle Scholar
  79. 79.
    Yu W, Yuan X-C (2004) J Mater Chem 14:821–823CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Materials SectionUniversity of PadovaPadovaItaly

Personalised recommendations