Advertisement

Journal of Sol-Gel Science and Technology

, Volume 59, Issue 3, pp 546–552 | Cite as

Correlation between structural and optical properties of TiO2:ZnO thin films prepared by sol–gel method

  • H. Bensouyad
  • D. Adnane
  • H. Dehdouh
  • B. Toubal
  • M. Brahimi
  • H. Sedrati
  • R. Bensaha
Original Paper

Abstract

We have studied structural and optical properties of thin films of TiO2, doped with 5% ZnO and deposited on glass substrate (by the sol–gel method). Dip-coated thin films have been examined at different annealing temperatures (350–450 °C) and for various layer thicknesses (89–289 nm). Refractive index, porosity and energy band gap were calculated from the measured transmittance spectrum. The values of the index of refraction are in the range of 1.97–2.44, the porosity is in the range of 0.07–0.46 and the energy band gap is in the range of 3.32–3.43. The coefficient of transmission varies from 50 to 90%. In the case of the powder of TiO2, doped with 5% ZnO, and aged for 3 months in ambient temperature, we have noticed the formation of the anatase phase (tetragonal structure with 20.23 nm grains). However, the undoped TiO2 exhibits an amorphous phase. After heat treatments of thin films, titanium oxide starts to crystallize at the annealing temperature 350 °C. The obtained structures are anatase and brookite. The calculated grain size, depending on the annealing temperature and the layer thickness, is in the range of 8.61–29.48 nm.

Keywords

Thin films TiO2–ZnO Sol–gel Anatase Brookite Optical properties Structural properties Thermal properties 

References

  1. 1.
    Hara K, Hariguchi T, Kinoshita T, Sayama K, Arakawa H (2001) J Sol Energy Mater 70:151CrossRefGoogle Scholar
  2. 2.
    Mechiakh R, Meriche F, Kremer R, Bensaha R, Boudine B, Boudrioua A (2007) J Opt Mater 30:645CrossRefGoogle Scholar
  3. 3.
    Natarajan C, Nogami G (1996) J Electrochem Soc 143:1547CrossRefGoogle Scholar
  4. 4.
    Yu J, Zhao X, Zhao Q (2001) J Mater Chem Phys 69:25CrossRefGoogle Scholar
  5. 5.
    Wang C, Xu BQ, Wang XM, Zhao JC (2005) J Solid State Chem 178:3500CrossRefGoogle Scholar
  6. 6.
    Hu C, Tang YC, Yu JC, Wong PK (2003) J Photocatal Appl Catal B Environ 40:131CrossRefGoogle Scholar
  7. 7.
    Bensouyad H, Sedrati H, Dehdouh H, Brahimi M, Abbas F, Akkari H, Bensaha R (2010) J Thin Solid Films 519:96CrossRefGoogle Scholar
  8. 8.
    Yang J, Li D, Wang X, Yang XJ, Lu LD (2002) J Solid State Chem 165:193CrossRefGoogle Scholar
  9. 9.
    Li JL, Liu L, Yu Y, Tang YW, Li HL, Du FP (2004) J Electrochem Commun 6:940CrossRefGoogle Scholar
  10. 10.
    Bandara J, Hadapangoda CC, Jayasekera WG (2004) J Appl Catal B Environ 50:83CrossRefGoogle Scholar
  11. 11.
    Li XZ, Li FB, Yang CL, Ge WK (2001) J Photochem Photobiol A Chem 141:209CrossRefGoogle Scholar
  12. 12.
    Shchukin D, Poznyak S, Kulak A, Pichat P (2004) J Photochem Photobiol A Chem 162:423CrossRefGoogle Scholar
  13. 13.
    Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V (2001) J Phys Chem B 105:1033CrossRefGoogle Scholar
  14. 14.
    Takahashi YK, Ngaotrakanwiwat P, Tatsuma T (2004) J Photocatal Electrochim Acta 49:2025CrossRefGoogle Scholar
  15. 15.
    Wu L, Yu JC, Fu XZ (2006) J Mol Catal A Chem 244:25CrossRefGoogle Scholar
  16. 16.
    Su H, Xie Y, Gao P, Xiong Y, Qian Y (2001) J Mater Chem 11:684CrossRefGoogle Scholar
  17. 17.
    Marci G, Augugliaro V, Lopez-Munoz MJ, Martin C, Palmisano L, Rives V (2001) J Phys Chem B 105:1033CrossRefGoogle Scholar
  18. 18.
    Hsu CC, Wu NL (2005) J Photochem Photobiol A: Chem 172:269CrossRefGoogle Scholar
  19. 19.
    Zhang DK, Liu YC, Liu YL, Yang H (2004) J Phys B 351:178CrossRefGoogle Scholar
  20. 20.
    Aal AA, Barakat MA, Mohamed RM (2008) J Appl Surf Sci 254:4577CrossRefGoogle Scholar
  21. 21.
    Zhang W, Zhu S, Li Y, Wang F (2008) J Vac 82:328CrossRefGoogle Scholar
  22. 22.
    Kim S, Yum J, Sung Y (2005) J Photochem Photobiol A: Chem 171:269CrossRefGoogle Scholar
  23. 23.
    Miki-Yoshida M, Collins-Martınez V, Amezaga-Madrid P, Aguilar-Elguezabal A (2002) J Thin Solid Films 419:60CrossRefGoogle Scholar
  24. 24.
    Mechiakh R, Bensaha R (2006) C R Phys 7:464CrossRefGoogle Scholar
  25. 25.
    Ivanda M, Music S, Popovic S, Gotic M (1999) J Mol Struct 480:645CrossRefGoogle Scholar
  26. 26.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Wesley, ReadingGoogle Scholar
  27. 27.
    Ray S, Banerjee R, Baraua AK (1980) Jpn J Appl Phys 19:1889CrossRefGoogle Scholar
  28. 28.
    Liao MH, Hsu CH, Chen DH (2006) J Solid State Chem 179:2020CrossRefGoogle Scholar
  29. 29.
    Xie Y, Liu X, Huang A, Ding C, Chu PK (2005) J Biomater 26:6129CrossRefGoogle Scholar
  30. 30.
    McDevitt NT, Baun WL (1964) J Spectrochim Acta 20:799CrossRefGoogle Scholar
  31. 31.
    Music S, Gotic M, Ivanda M, Popovic S, Turkovic A, Trojko R, Sekulic A, Furic K (1997) Mater Sci Eng B 47:33CrossRefGoogle Scholar
  32. 32.
    Ocana M, Fornes V, Serna JV (1988) J Solid State Chem 75:364CrossRefGoogle Scholar
  33. 33.
    Djaoued Y, Badilescu S, Ashrit PV (2002) J Sol–Gel Sci Technol 24:247CrossRefGoogle Scholar
  34. 34.
    Tian J, Wang J, Dai J, Wang X, Yin Y (2009) Surf Coat Technol 204:723CrossRefGoogle Scholar
  35. 35.
    Oh SH, Kim DJ, Hahn SH, Kim EJ (2003) J Mater Lett 57:4151CrossRefGoogle Scholar
  36. 36.
    Manifacier JC, Gasiot J, Fillard JP (1976) J Phys E 9:1002CrossRefGoogle Scholar
  37. 37.
    Yoldas BE, Partlow PW (1985) Thin Solid Films 129:1CrossRefGoogle Scholar
  38. 38.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, NYGoogle Scholar
  39. 39.
    Wang YL, Zhang KY (2001) Surfing Coat Technol 140:155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratoire de céramiques, Faculté des Sciences ExactesUniversité MentouriConstantineAlgeria

Personalised recommendations