Advertisement

Journal of Sol-Gel Science and Technology

, Volume 59, Issue 2, pp 245–251 | Cite as

Pechini based titanium sol as a matrix in TiO2 pastes for dye-sensitized solar cell application

  • Marija Drev
  • Urša Opara Krašovec
  • Mateja Hočevar
  • Marko Berginc
  • Marjeta Kržmanc Maček
  • Marko Topič
Original Paper

Abstract

The influence that the degree of polyesterification has on a titanium sol (Ti-sol) prepared via the Pechini method that acts as a matrix in TiO2 pastes used for dye sensitized solar cells is reported. The different content of the polyester in the Ti-sol was realized by varying the heating time of the Ti-sol. Titanium dioxide pastes were prepared by introducing a commercial TiO2 nanopowder into the Ti-sols. The TiO2 layers were tested as photoanodes in dye-sensitized solar cells (DSSCs). The most appropriate degree of polyesterification was achieved by heating the Ti-sol for 0.5 and 1 h, while longer heating deteriorates the TiO2 layer morphology. The highest efficiency of the DSSCs based on an ionic liquid electrolyte was 6.3% measured under standard test conditions (100 mW/cm2, AM 1.5, 25 °C).

Keywords

TiO2 Dye-sensitized solar cell Pechini method Polyesterification 

Notes

Acknowledgments

The authors would like to thank Dr. Peter Panjan for making thickness measurements. M. D. would personally like to acknowledge the CBS Institute and Public Agency for Technology of the Republic of Slovenia for providing her with Ph.D. funding. We are also grateful for the financial support given by the Slovenian Research Agency (P2-0197).

References

  1. 1.
    Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  2. 2.
    O’Regan B, Grätzel M (1991) Nature 353:737–739CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2001) Nature 414:338–344CrossRefGoogle Scholar
  4. 4.
    Wurfel U, Wagner J, Hinsch A (2005) J Phys Chem 109:20444–20448Google Scholar
  5. 5.
    Hočevar M, Opara Krašovec U, Berginc M, Dražič G, Hauptman N, Topič M (2008) J Sol–Gel Sci Technol 48:156–162CrossRefGoogle Scholar
  6. 6.
    Opara Krašovec U, Berginc M, Hočevar M, Topič M (2009) Sol Energy Mater Sol Cells 93:379–381CrossRefGoogle Scholar
  7. 7.
    Fotsa Ngaffo F, Caricato AP, Fernandez M, Martino M, Romano F (2007) Appl Surf Sci 253:6508–6511CrossRefGoogle Scholar
  8. 8.
    Meen TH, Water W, Chen WR, Chao SM, Ji CJ, Huang LW (2009) J Phys Chem Solids 70:472–476CrossRefGoogle Scholar
  9. 9.
    Hu LH, Dai SY, Weng J, Xiao SF, Sui YF, Huang Y, Chen SH, Kong FT, Pan X, Liang LY, Wang KJ (2007) J Phys Chem B 111:358–362CrossRefGoogle Scholar
  10. 10.
    Liu KS, Fu HG, Shi KY, Xiao FS, Jing LQ, Xin BF (2005) J Phys Chem B 109:18719–18722CrossRefGoogle Scholar
  11. 11.
    Jiu JT, Isoda SJ, Wang FM, Adachi MJ (2006) J Phys Chem B 110:2087–2092CrossRefGoogle Scholar
  12. 12.
    Adachi M, Murata Y, Kao JT, Jiu JT, Sakamoto M, Wang FM (2004) J Am Chem Soc 126:14943–14949CrossRefGoogle Scholar
  13. 13.
    Pechini M (1967) US Patent 3 330 697Google Scholar
  14. 14.
    Liu M, Wang DJ (1995) Mater Res 10:3210–3221CrossRefGoogle Scholar
  15. 15.
    Spagnol PD, Varela JA, Zaghete MA, Longo E, Tebcherani SM (2003) Mater Chem Phys 77:918–923CrossRefGoogle Scholar
  16. 16.
    Anderson HU, Pennell MJ, Guha JP (1987) Adv Ceram 21:91–98Google Scholar
  17. 17.
    Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) J Sol–Gel Sci Technol 53:647–654CrossRefGoogle Scholar
  18. 18.
    Berginc M, Opara Krašovec U, Jankovec M, Topič M (2007) Sol Energy Mater Sol Cells 91:821–828CrossRefGoogle Scholar
  19. 19.
    Cho SG, Johnson PF, Condrate RA Sr (1990) J Mater Sci 25:4738–4744CrossRefGoogle Scholar
  20. 20.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordinate compaunds. John Wiley & Sons Inc, New YorkGoogle Scholar
  21. 21.
    Thamaphat K, Limsuwan P, Ngotawornchai B (2008) J Nat Sci 42:357–361Google Scholar
  22. 22.
    Zou Y, Wang ZA, Lan XH, Huang NK (2009) J Korean Phys Soc 55:2650–2653CrossRefGoogle Scholar
  23. 23.
    Park NG, Lagemaat J, Frank AJ (2000) J Phys Chem B 104:8989–8994CrossRefGoogle Scholar
  24. 24.
    Soga T (2006) Nanostructured materials for solar energy conversion. Elsevier, The NetherlandsGoogle Scholar
  25. 25.
    Cullity BD (1978) Elements of X-ray diffraction. Wesley Publishing Company, AddisonGoogle Scholar
  26. 26.
    Sakka S (2005) Handbook of sol–gel science and tecnology, processing characterization and applications. Kluwer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marija Drev
    • 1
    • 2
  • Urša Opara Krašovec
    • 1
  • Mateja Hočevar
    • 1
  • Marko Berginc
    • 1
  • Marjeta Kržmanc Maček
    • 3
  • Marko Topič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.CBS InstituteTrebnjeSlovenia
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations