Journal of Sol-Gel Science and Technology

, Volume 59, Issue 2, pp 245–251 | Cite as

Pechini based titanium sol as a matrix in TiO2 pastes for dye-sensitized solar cell application

  • Marija Drev
  • Urša Opara Krašovec
  • Mateja Hočevar
  • Marko Berginc
  • Marjeta Kržmanc Maček
  • Marko Topič
Original Paper

Abstract

The influence that the degree of polyesterification has on a titanium sol (Ti-sol) prepared via the Pechini method that acts as a matrix in TiO2 pastes used for dye sensitized solar cells is reported. The different content of the polyester in the Ti-sol was realized by varying the heating time of the Ti-sol. Titanium dioxide pastes were prepared by introducing a commercial TiO2 nanopowder into the Ti-sols. The TiO2 layers were tested as photoanodes in dye-sensitized solar cells (DSSCs). The most appropriate degree of polyesterification was achieved by heating the Ti-sol for 0.5 and 1 h, while longer heating deteriorates the TiO2 layer morphology. The highest efficiency of the DSSCs based on an ionic liquid electrolyte was 6.3% measured under standard test conditions (100 mW/cm2, AM 1.5, 25 °C).

Keywords

TiO2 Dye-sensitized solar cell Pechini method Polyesterification 

References

  1. 1.
    Hashimoto K, Irie H, Fujishima A (2005) Jpn J Appl Phys 44:8269–8285CrossRefGoogle Scholar
  2. 2.
    O’Regan B, Grätzel M (1991) Nature 353:737–739CrossRefGoogle Scholar
  3. 3.
    Grätzel M (2001) Nature 414:338–344CrossRefGoogle Scholar
  4. 4.
    Wurfel U, Wagner J, Hinsch A (2005) J Phys Chem 109:20444–20448Google Scholar
  5. 5.
    Hočevar M, Opara Krašovec U, Berginc M, Dražič G, Hauptman N, Topič M (2008) J Sol–Gel Sci Technol 48:156–162CrossRefGoogle Scholar
  6. 6.
    Opara Krašovec U, Berginc M, Hočevar M, Topič M (2009) Sol Energy Mater Sol Cells 93:379–381CrossRefGoogle Scholar
  7. 7.
    Fotsa Ngaffo F, Caricato AP, Fernandez M, Martino M, Romano F (2007) Appl Surf Sci 253:6508–6511CrossRefGoogle Scholar
  8. 8.
    Meen TH, Water W, Chen WR, Chao SM, Ji CJ, Huang LW (2009) J Phys Chem Solids 70:472–476CrossRefGoogle Scholar
  9. 9.
    Hu LH, Dai SY, Weng J, Xiao SF, Sui YF, Huang Y, Chen SH, Kong FT, Pan X, Liang LY, Wang KJ (2007) J Phys Chem B 111:358–362CrossRefGoogle Scholar
  10. 10.
    Liu KS, Fu HG, Shi KY, Xiao FS, Jing LQ, Xin BF (2005) J Phys Chem B 109:18719–18722CrossRefGoogle Scholar
  11. 11.
    Jiu JT, Isoda SJ, Wang FM, Adachi MJ (2006) J Phys Chem B 110:2087–2092CrossRefGoogle Scholar
  12. 12.
    Adachi M, Murata Y, Kao JT, Jiu JT, Sakamoto M, Wang FM (2004) J Am Chem Soc 126:14943–14949CrossRefGoogle Scholar
  13. 13.
    Pechini M (1967) US Patent 3 330 697Google Scholar
  14. 14.
    Liu M, Wang DJ (1995) Mater Res 10:3210–3221CrossRefGoogle Scholar
  15. 15.
    Spagnol PD, Varela JA, Zaghete MA, Longo E, Tebcherani SM (2003) Mater Chem Phys 77:918–923CrossRefGoogle Scholar
  16. 16.
    Anderson HU, Pennell MJ, Guha JP (1987) Adv Ceram 21:91–98Google Scholar
  17. 17.
    Hočevar M, Berginc M, Topič M, Opara Krašovec U (2010) J Sol–Gel Sci Technol 53:647–654CrossRefGoogle Scholar
  18. 18.
    Berginc M, Opara Krašovec U, Jankovec M, Topič M (2007) Sol Energy Mater Sol Cells 91:821–828CrossRefGoogle Scholar
  19. 19.
    Cho SG, Johnson PF, Condrate RA Sr (1990) J Mater Sci 25:4738–4744CrossRefGoogle Scholar
  20. 20.
    Nakamoto K (1986) Infrared and Raman spectra of inorganic and coordinate compaunds. John Wiley & Sons Inc, New YorkGoogle Scholar
  21. 21.
    Thamaphat K, Limsuwan P, Ngotawornchai B (2008) J Nat Sci 42:357–361Google Scholar
  22. 22.
    Zou Y, Wang ZA, Lan XH, Huang NK (2009) J Korean Phys Soc 55:2650–2653CrossRefGoogle Scholar
  23. 23.
    Park NG, Lagemaat J, Frank AJ (2000) J Phys Chem B 104:8989–8994CrossRefGoogle Scholar
  24. 24.
    Soga T (2006) Nanostructured materials for solar energy conversion. Elsevier, The NetherlandsGoogle Scholar
  25. 25.
    Cullity BD (1978) Elements of X-ray diffraction. Wesley Publishing Company, AddisonGoogle Scholar
  26. 26.
    Sakka S (2005) Handbook of sol–gel science and tecnology, processing characterization and applications. Kluwer, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marija Drev
    • 1
    • 2
  • Urša Opara Krašovec
    • 1
  • Mateja Hočevar
    • 1
  • Marko Berginc
    • 1
  • Marjeta Kržmanc Maček
    • 3
  • Marko Topič
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.CBS InstituteTrebnjeSlovenia
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations