Journal of Sol-Gel Science and Technology

, Volume 60, Issue 3, pp 388–394 | Cite as

Synthesis of cobalt doped silica thin film for low temperature optical gas sensor

  • Serena Esposito
  • Antonio Setaro
  • Pasqualino Maddalena
  • Antonio Aronne
  • Pasquale Pernice
  • Marco Laracca
Original Paper


A modified sol–gel method was used to prepare cobalt doped silica thin film with a cobalt content of 10, 20 and 30 mol% (10Co, 20Co and 30Co). The prepared films were annealed at different temperatures in the range 400–1,000 °C, and their structural evolution examined. The mixed valence cobalt oxide, Co3O4, crystallizes only in the sample with the higher cobalt content, while cobalt silicate is the only crystalline phase detected in the sample 10Co and 20Co. Both the cobalt content and the temperature of heat treatment resulted to affect the nature of cobalt species dispersed in the silica matrix. The 30Co was selected for further investigations by FTIR spectroscopy to follow the structural evolution of 30Co film as function of the temperature and UV–Vis to get information on the cobalt valence state. The optical gas-sensing properties of 30Co films, containing Co3O4 as the major cobalt phase, were studied through the measuring of the film transmittance in dry air and in presence of dry air containing variable concentrations of polluting gases, CO and NO2. The 30Co samples resulted to be highly sensitive to CO at room temperature. An explanation for the CO sensing characteristics, at low temperature, was proposed by referring to the physisorption-related mechanics of CO.


Thin films Cobalt oxide Optical gas sensing Sol–gel 



Special thanks to Dr. Katayoun Gharagozloo-Hubmann for her useful suggestions.


  1. 1.
    Svegl F, Orel B, Hutchins M (1997) J Sol–Gel Sci Tech 8:765Google Scholar
  2. 2.
    Martyanov IN, Uma S, Rodrigues S, Klabunde KJ (2005) Langmuir 21:2273CrossRefGoogle Scholar
  3. 3.
    Dutta P, Elbashir NO, Manivannan A, Seehra MS, Roberts CB (2004) Catal Lett 98:203CrossRefGoogle Scholar
  4. 4.
    Cattaruzza E, Battaglin G, Canton P, de Julian Fernandez C, Ferroni M, Gonnella F, Maurizio C, Riello P, Sada C, Sangregorio C, Scremin BF (2004) Appl Surf Sci 226:62CrossRefGoogle Scholar
  5. 5.
    Mergler YJ, van Aalst A, van Delft J, Nieuwenhuys BE (1996) J Catal 161:310CrossRefGoogle Scholar
  6. 6.
    Hamada H, Kintaichi Y, Inaba M, Tanaba M, Yoshinari T, Tsuchida H (1996) Catal Today 29:53CrossRefGoogle Scholar
  7. 7.
    Jansson J (2000) J Catal 194:55CrossRefGoogle Scholar
  8. 8.
    Torncrona A, Skoglundh M, Thormahlen P, Fridell E, Jobson E (1997) Appl Catal B 14:131CrossRefGoogle Scholar
  9. 9.
    Choy JH, Jung H, Han YS, Yoon JB, Shul YG, Kim HJ (2002) Chem Mater 14:3823CrossRefGoogle Scholar
  10. 10.
    Ando M, Kobayashi T, Haruta M (1996) Sensors and Actuators B 32:157CrossRefGoogle Scholar
  11. 11.
    Ando M, Kobayashi T, Haruta M (1997) Catal Today 36:135CrossRefGoogle Scholar
  12. 12.
    Koshizaki N, Yasumoto K, Sasaki T (2000) Sensors and Actuators B 66:122CrossRefGoogle Scholar
  13. 13.
    Cantalini C, Post M, Buso D, Guglielmi M, Martucci A (2005) Sensors and Actuators B 108:184CrossRefGoogle Scholar
  14. 14.
    Martucci A, Buso D, Guglielmi M, Zbroniec L, Koshizaki N, Post M (2004) J Sol–Gel Sci Tech 32:243CrossRefGoogle Scholar
  15. 15.
    Ando M (2006) Trends Anal Chem 23:937CrossRefGoogle Scholar
  16. 16.
    Hwang W-J, Shin K-S, Roh J-H, Lee D-S, Choa S-H (2011) Sensors 11:2580CrossRefGoogle Scholar
  17. 17.
    Jime′nez-Cadena G, Riu J, Xavier Rius F (2007) Analyst 132:1083CrossRefGoogle Scholar
  18. 18.
    Brinker CJ, Scherer GW (1990) Sol–Gel Science: the physics and chemistry of sol–gel processing. Academic Press, New YorkGoogle Scholar
  19. 19.
    Jer′onimo PCA, Ara′ujo AN, Conceicao M, Montenegro BSM (2007) Talanta 72:13CrossRefGoogle Scholar
  20. 20.
    Esposito S, Turco M, Ramis G, Bagnasco G, Pernice P, Pagliuca C, Bevilacqua M, Aronne A (2007) J Solid State Chem 180:3341CrossRefGoogle Scholar
  21. 21.
    Clayden NJ, Pernice P, Aronne A (2005) J Non-Cryst Solids 351:195CrossRefGoogle Scholar
  22. 22.
    Lavrenčič Štangar U, Orel B, Krajnc M (2003) J Sol-Gel Sci Tech 26:771CrossRefGoogle Scholar
  23. 23.
    Lenglet M, Jorgensen CK (1994) Chem Phys Lett 229:616CrossRefGoogle Scholar
  24. 24.
    Armelao L, Barreca D, Gross S, Martucci A, Tieto M, Tondello E (2001) J Non-Cryst Solids 293–295:477CrossRefGoogle Scholar
  25. 25.
    Ortega-Zarzosa G, Araujo-Andrade C, Compeàn-Jasso ME, Martìnez JR (2002) J Sol-Gel Sci Tech 24:23CrossRefGoogle Scholar
  26. 26.
    Rao KJ, Benqlilou-Moudden H, Desbat B, Vinatier P, Levasseur A (2002) J Solid State Chem 165:42CrossRefGoogle Scholar
  27. 27.
    Almeida RM, Pantano CG (1990) J Appl Phys 68:4225CrossRefGoogle Scholar
  28. 28.
    Jansson J, Skoglundh M, Fridell E, Thormählen P (2001) Top Catal 16/17:385CrossRefGoogle Scholar
  29. 29.
    Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Zeiss H (1960) Organometallic chemistry, Reinhold Pub CorpGoogle Scholar
  31. 31.
    Wiberg N, Holleman AF, Wiberg E (2001) Inorganic chemistry. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Serena Esposito
    • 1
  • Antonio Setaro
    • 2
    • 4
  • Pasqualino Maddalena
    • 2
  • Antonio Aronne
    • 3
  • Pasquale Pernice
    • 3
  • Marco Laracca
    • 5
  1. 1.Laboratorio Materiali del Dipartimento di Meccanica, Strutture, Ambiente e TerritorioFacolta` di Ingegneria dell’Università di CassinoCassinoItaly
  2. 2.Dipartimento di Scienze FisicheUniversità di Napoli Federico IINaplesItaly
  3. 3.Dipartimento di Ingegneria dei Materiali e ProduzioneUniversità di Napoli Federico II P.le TecchioNaplesItaly
  4. 4.Institut für ExperimentalphysikFreie Universität BerlinBerlinGermany
  5. 5.Department of Automation, Electromagnetism, Information Engineering and Industrial MathematicsUniversity of CassinoCassinoItaly

Personalised recommendations