Journal of Sol-Gel Science and Technology

, Volume 60, Issue 3, pp 324–332 | Cite as

Ni-based xero- and aerogels as catalysts for nitroxidation processes

  • Maria Giorgia Cutrufello
  • Elisabetta Rombi
  • Italo Ferino
  • Danilo Loche
  • Anna Corrias
  • Maria Francesca CasulaEmail author
Original Paper


Porous nanocomposites made out of nickel dispersed on silica or alumina matrices were prepared as prospective catalysts for the nitroxidation of hydrocarbons in the form of aerogel or xerogel by adopting either a supercritical or a conventional gel drying procedure. The structural and textural features of the materials were investigated by X-ray diffraction, transmission electron microscopy and N2 physisorption and combined to the acid/base and reducibility data as deduced by adsorption microcalorimetry and temperature programmed reduction (TPR) profiles. The alumina-based samples are made out of nanocrystalline nickel aluminate and are mesoporous, although the aerogel has larger pore volumes and surface area than the xerogel. On the other hand, in the silica-based samples nickel oxide nanocrystals are dispersed on amorphous silica, the size of the nanocrystals being around 5 nm in the microporous xerogel and 14 nm in the mainly mesoporous aerogel. TPR data point out that the alumina-based samples have similar reducibility, whereas significant differences were observed in the silica-supported composites, the NiO–SiO2 aerogel exhibiting improved reducibility at low temperature. The NO-catalyst interaction was monitored by temperature programmed NO reaction coupled to mass spectrometry and preliminary tests on the use of the NiO–SiO2 xerogel and aerogel nanocomposites for the catalytic nitroxidation of 1-methyl-naphthalene to 1-naphthonitrile were obtained in a fixed-bed continuous-flow reactor. The data indicate that the aerogel exhibits larger selectivity than the corresponding xerogel, pointing out the importance of tuning the sol–gel parameters in the design of porous composite materials for catalytic applications.


Aerogels Xerogels Nanocomposites Catalysis Nickel Nitroxidation 



The Italian Institute of Technology (IIT) under the SEED project “NANOCAT” and Regione Autonoma della Sardegna through POR Sardegna FSE 2007–2013, L.R.7/2007 are gratefully acknowledged for financial support.


  1. 1.
    Ward DA, Ko EI (1995) Ind Eng Chem Res 34:421–433CrossRefGoogle Scholar
  2. 2.
    Feng S Yang W (2011) Effect of the preparation method on the catalytic performance of Ca3Co4O5 for methane oxidation J Sol-Gel Sci Technol. doi: 10.1007/s10971-010-2396-1
  3. 3.
    Sinha AK, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M (2005) J Phys Chem B 109:3956–3965CrossRefGoogle Scholar
  4. 4.
    Brinker CJ, Scherer GW (1990) Sol-gel science. Academic Press, San Diego, CAGoogle Scholar
  5. 5.
    Innocenzi P, Malfatti L, Kidchob T, Falcaro P (2009) Chem Mater 21:2555–2564CrossRefGoogle Scholar
  6. 6.
    Framery E, Mutin PH (2002) J Sol-Gel Sci Technol 24:191–195CrossRefGoogle Scholar
  7. 7.
    Husing N, Schubert U (1998) Angew Chem Int Ed 37:22–45CrossRefGoogle Scholar
  8. 8.
    Pajonk GM (1991) Catal Today 72:217–266Google Scholar
  9. 9.
    Pajonk GM (1999) Catal Today 52:3–13CrossRefGoogle Scholar
  10. 10.
    Schneider M, Baiker A (1995) Catal Rev-Sci Eng 37:515–556CrossRefGoogle Scholar
  11. 11.
    Vallribera A, Molins E (2008) Aerogel supported nanoparticles in catalysis. In: Astruc D (ed) Nanoparticles and catalysis. Wiley, Weinheim, GermanyGoogle Scholar
  12. 12.
    Falqui A, Loche D, Casula MF, Corrias A, Gozzi D, Latini A (2011) J Nanosci Nanotechnol 11:2215–2225CrossRefGoogle Scholar
  13. 13.
    Ferino I, Casula MF, Corrias A, Cutrufello MG, Monaci R, Paschina G (2000) Phys Chem Chem Phys 2:1847–1854CrossRefGoogle Scholar
  14. 14.
    Dusi M, Muller CA, Mallat T, Baiker A (1999) Chem Comm 2:197–198CrossRefGoogle Scholar
  15. 15.
    Pajonk GM, Manzalji T (1993) Catal Lett 21:361–369CrossRefGoogle Scholar
  16. 16.
    Pajonk GM (1997) Catal Today 35:319–337CrossRefGoogle Scholar
  17. 17.
    Corrias A, Casula MF, Falqui A, Paschina G (2004) Chem Mater 16:3130–3138CrossRefGoogle Scholar
  18. 18.
    Casula MF, Corrias A, Paschina G (2000) J Mater Res 15:2187–2194CrossRefGoogle Scholar
  19. 19.
    PDF-2 File. ICDD—International Centre for Diffraction Data, 1601 Park Lane, Swarthmore, PAGoogle Scholar
  20. 20.
    Brunauer S, Emmet PH, Teller E (1938) J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  21. 21.
    Lippens BC, De Boer JH (1965) J Catal 4:319–323CrossRefGoogle Scholar
  22. 22.
    Lecloux A, Pirard JP (1979) J Colloid Interface Sci 70:265–281CrossRefGoogle Scholar
  23. 23.
    Dubinin MM (1955) Q Rev Chem Soc 9:101–114CrossRefGoogle Scholar
  24. 24.
    Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, London, UKGoogle Scholar
  25. 25.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  26. 26.
    Fang K, Ren J, Sun Y (2005) J Mol Catal A Chem 229:51–58CrossRefGoogle Scholar
  27. 27.
    Kirumakki SR, Shpeizer BG, Vidya Sagar G, Chary KVR, Clearfield A (2006) J Catal 242:319–331CrossRefGoogle Scholar
  28. 28.
    He S, Jing Q, Yu W, Mo L, Lou H, Zheng X (2009) Catal Today 148:130–133CrossRefGoogle Scholar
  29. 29.
    Wang Y, Wu R, Zhao Y (2010) Catal Today 158:470–474CrossRefGoogle Scholar
  30. 30.
    Ran R, Xiong G, Yang W (2002) J Mater Chem 12:1854–1859CrossRefGoogle Scholar
  31. 31.
    Gayán P, Dueso C, Abad A, Adanez J, de Diego LF, García-Labiano F (2009) Fuel 88:1016–1023CrossRefGoogle Scholar
  32. 32.
    Roy B, Loganathan K, Pham HN, Datye AK, Leclerc CA (2010) Int J Hydrogen Energ 35:11700–11708CrossRefGoogle Scholar
  33. 33.
    Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C (2010) Steam reforming of methane to syngas over NiAl2O4 spinel catalysts. Int J Hydrogen Energ. doi: 10.1016/j.ijhydene.2010.11.071

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Maria Giorgia Cutrufello
    • 1
  • Elisabetta Rombi
    • 1
  • Italo Ferino
    • 1
  • Danilo Loche
    • 1
  • Anna Corrias
    • 1
  • Maria Francesca Casula
    • 1
    Email author
  1. 1.Dipartimento di Scienze Chimiche and INSTMUniversità di CagliariMonserratoItaly

Personalised recommendations