Journal of Sol-Gel Science and Technology

, Volume 58, Issue 2, pp 545–556 | Cite as

Optimization in the immobilization of penicillin G acylase by entrapment in xerogel particles with magnetic properties

  • Susana Bernardino
  • Nídia Estrela
  • Vanessa Ochoa-Mendes
  • Pedro Fernandes
  • Luís P. Fonseca
Article

Abstract

Biocatalysis presents a sound alternative to chemical synthesis in the field of drug production, given the highly selective nature of biological catalysts. Penicillin G Acylase (PGA) from E. coli is currently used to hydrolyze penicillin G (PG) and catalyzes the synthesis of β-lactam antibiotics. In this work, particular emphasis is given to recent developments in penicillin G acylase immobilization, by entrapment simultaneously with nano-magnetic particles in a silica matrix. The sol–gel biocatalytic particles were prepared either by a conventional method (crushed powder) or by a more recent approach, based in an emulsion system using 150 mM AOT/isooctane, which allowed for the formation of spherical micro- and nanobeads. The effects on PGA activity of different sol–gel precursors, additives, enzyme concentration, aging, drying conditions and mechanical stability were evaluated. After these optimization studies, a mechanically stable carrier based on porous xerogels silica matrixes, starting from tetramethoxysilane (TMOS) with 65–67% PGA activity yield in these carriers allowed an immobilization yield of 74 mg protein g dry sol–gel −1 and 930 Ug dry sol–gel −1 for specific activity were obtained.

Keywords

Penicillin G acylase Enzyme immobilization Sol–gel Entrapment Micro-emulsion Magnetic particles 

Notes

Acknowledgments

S. M. S. A. Bernardino, N. I. Estrela and P. Fernandes acknowledge Fundação para a Ciência e a Tecnologia (Portugal) for financial support in the form of the PhD grants SFRH/BD/30632/2006, SFRH/BD/18639/2004 and for a contract under Program Ciência 2007, respectively.

References

  1. 1.
    Cheetham PSJ (1995) The application of enzymes in industry. In: Wiseman A, Horwood Ellis (eds) Handbook of enzyme biotechnology. Wiley, LondonGoogle Scholar
  2. 2.
    Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556CrossRefGoogle Scholar
  3. 3.
    Giordano RC, Ribeiro MPA, Giordano RLC (2006) Kinetics of β-lactam antibiotics synthesis by penicillin G acylase (PGA) from the viewpoint of the industrial enzymatic reactor optimization. Biotecchnol Adv 24:27–41CrossRefGoogle Scholar
  4. 4.
    Jin X, Wu Q, Chen Q, Chen C-X, Lin X-F (2008) Immobilization of penicillin G acylase on a composite carrier with a biocompatible microenvironment of chitosan. J Chem Techonol Biotechnol 83:1710–1716CrossRefGoogle Scholar
  5. 5.
    Shewale JG, Sivaraman H (1989) Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Process Biochem 24:146–154Google Scholar
  6. 6.
    Sun H, Bao XY, Zhao XS (2009) Immobilization of penicillin G acylase on oxirane-modified mesoporous silicas. Langmuir 25:1807–1812CrossRefGoogle Scholar
  7. 7.
    Serenovic L, Stankovic N, Spizzo P, Basso A et al (2006) Highlevel production and covalent immobilization of Providencia rettgeri Penicillin G Acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng 93:344–354CrossRefGoogle Scholar
  8. 8.
    Ignatova Z, Wischnewski F, Notbohm H, Kasche V (2005) Pro-sequence and Ca2+ -binding: implications for folding and maturation of Ntn-hydrolase Penicillin Amidase from E. coli. J Mol Biol 348:999–1014CrossRefGoogle Scholar
  9. 9.
    Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PCE (1995) Penicillin acylase has a single amino acid catalytic centre. Nature 373:264–268CrossRefGoogle Scholar
  10. 10.
    Arroyo M, de la Mata I, Acebal C (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60:507–514Google Scholar
  11. 11.
    Illanes A (2004) Optimization of cephalexin synthesis with immobilized penicillin acylase in ethylene glycol medium at low temperatures. J Mol Catal B Enzym 30:95–103CrossRefGoogle Scholar
  12. 12.
    Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307CrossRefGoogle Scholar
  13. 13.
    Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enz Microb Technol 40:1451–1463CrossRefGoogle Scholar
  14. 14.
    Cabral JMS, Kennedy JF (1993). In: Gupta MN (ed). Thermostability of enzymes. Springer, BerlinGoogle Scholar
  15. 15.
    Schroën CGPH, Eldin MSM, Janssen AEM, Mita GD, Tramper J (2001) Cephalexin synthesis by immobilised penicillin G acylase under non-isothermal conditions: reduction of diffusion limitation. J Mol Catal B Enzym 15:163–172CrossRefGoogle Scholar
  16. 16.
    Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotrandformation 23(3/4):141–147Google Scholar
  17. 17.
    Yu HW, Chen H, Wang X, Yang YY, Ching CB (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B Enzym 43:124–127CrossRefGoogle Scholar
  18. 18.
    Betancor L, Luckarift HR (2007) Biosilica-immobilized enzymes for biocatalysis. In: Palomo JM (ed) Recent advances in biocatalysis and biotransformation. Research Signpost, FloridaGoogle Scholar
  19. 19.
    Sheldon RA, Schoevaart R, Van Langen LM (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform 23(3/4):141–147CrossRefGoogle Scholar
  20. 20.
    Wilson L, Illanes A et al (2004) Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86(5):558–562CrossRefGoogle Scholar
  21. 21.
    Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 5:1605–1614CrossRefGoogle Scholar
  22. 22.
    Livage J (1997) Sol-gel processes. Curr Opin Solid State Mater Sci 2:132–138CrossRefGoogle Scholar
  23. 23.
    Livage J, Coradin T, Roux C (2001) Encapsulation of biomolecules in silica gels. J Phys Condens Matter 13:R673–R691CrossRefGoogle Scholar
  24. 24.
    Shin MJ, Park JY, Park K, Song S, Yoo YJ (2007) Novel sol-gel immobilization of horseradish peroxidase employing a detergentless micro-emulsion system. Biotechnol Bioprocess Eng 12:640–645CrossRefGoogle Scholar
  25. 25.
    O′Neill H, Angley CV, Hemery I, Evans BR, Dai S, Woodward J (2002) Properties of carbohydrate-metabolizing enzymes immobilized in sol-gel beads: stabilization of invertase and β-glucosidase by blue dextran. Biotechnol Lett 24:783–790CrossRefGoogle Scholar
  26. 26.
    Reetz MT, Zonta A, Vijayakrishnan V, Schimossek K (1998) Entrapment of lipases in hydrophobic magnetite-containing sol-gel materials: magnetic separation of heterogeneous biocatalysts. J Mol Catal A Chem 134:251–258CrossRefGoogle Scholar
  27. 27.
    Brinker JC, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Book News Inc, PortlandGoogle Scholar
  28. 28.
    Kawakami K, Yoshida S (1995) Sol-gel entrapment of lipase using a mixture of tetramethoxisilane and methyltrimethoxysilane as the alkoxide precursor: esterification activity in organic media. Biotechnol Tech 9:701–704CrossRefGoogle Scholar
  29. 29.
    Li B, Takahashi H (2000) New immobilization method for enzyme stabilization involving a mesoporous material and an organic/inorganic hybrid gel. Biotechnol Lett 22:1953–1958CrossRefGoogle Scholar
  30. 30.
    Jin W, Brennan JD (2002) Properties and applications of proteins encapsulated within sol-gel derived materials. Anal Chim Acta 461:1–36CrossRefGoogle Scholar
  31. 31.
    Zhou HX, Dill KA (2001) Stabilization of proteins in confined spaces. Biochemistry 40:11289–11293CrossRefGoogle Scholar
  32. 32.
    Betancor L, López-Gallego F, Hidalgo A, Fuentesm M, Podrasky O, Kuncova G, Guisán JM, Fernandez-Lafuente R (2005) Advantages of the pre-immobilization of enzymes on porous supports for their entrapment in sol-gels. Biomacromolecules 6:1027–1030CrossRefGoogle Scholar
  33. 33.
    Gill I, Ballesteros A (2000) Bioencapsulation within synthetic polymers (part 1): sol-gel encapsulated biological. Trends Biotechnol 18:282–296CrossRefGoogle Scholar
  34. 34.
    Basso A, De Martin L, Ebert C, Gardossi L, Tomat A, Casarci M, Rosi OL (2000) A novel support for enzyme adsorption: properties and applications of aerogels in low water media. Tetrahedrom Lett 41:8627–8630CrossRefGoogle Scholar
  35. 35.
    Avnir D, Coradin T, Lev O, Livage J (2006) Recent bio-applications of sol-gel materials. J Mater Chem 16:1013–1030CrossRefGoogle Scholar
  36. 36.
    Lee C-H, Lin T-S, Mou C-Y (2009) Mesoporous materials for encapsulating enzymes. Nano Today 4:165–179CrossRefGoogle Scholar
  37. 37.
    Desimone MF, Matiacevich SB, Buera MP, Diaz LE (2008) Effects of relative humidity on enzyme activity immobilizedin sol–gel-derived silica nanocomposites. Technology 42:583–588Google Scholar
  38. 38.
    Wei Y, Xu J, Fen Q, Dong H, Lin M (2000) Encapsulation of enzymes in mesoporous host materials via the nonsurfactant-templated sol-gel process. Mater Lett 44:6–11CrossRefGoogle Scholar
  39. 39.
    Chang-won L, Yi S, Kim J, Lee Y, Kim B (2006) Improved immobilized enzyme systems using spherical micro silica sol-gel enzyme beads. Biotechnol Bioprocess Eng 11:277–281CrossRefGoogle Scholar
  40. 40.
    Adachi K, Iwamura T, Chujo Y (2004) Novel synthesis of submicrometer silica spheres in non-alcoholic solvent by microwave-assisted sol-gel method. Chem Lett 33:1504–1505CrossRefGoogle Scholar
  41. 41.
    Dong J, Xu Z, Wang F (2008) Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl Surf Sci 254:3522–3530CrossRefGoogle Scholar
  42. 42.
    Abu-Reziq R, Wang D, Post M, Alper H (2008) Separable catalysts in one-pot synthesis for greener chemistry. Chem Mater 20:2544–2550CrossRefGoogle Scholar
  43. 43.
    Yilmaz E, Sezgin M and Yilmaz M (2011) Immobilization of Candida rugosa lipase on magnetic sol–gel composite supports for enzymatic resolution of (R,S)-Naproxen methyl ester. J Mol Catal B Enzym. doi: 10.1016/j.molcatb.2010.12.007
  44. 44.
    Kobayashi Y, Saeki S, Yoshida M, Nagao D, Konno M (2008) Synthesis of spherical submicron-sized magnetite/silica nanocomposite particles. J Sol-Gel Technolol 45:35–41CrossRefGoogle Scholar
  45. 45.
    Bernardino SMSA, Fernandes P, Fonseca LP (2009) A new biocatalyst: penicillin G acylase immobilized in sol-gel micro-particles with magnetic properties. Biotechnol J 4:695–702CrossRefGoogle Scholar
  46. 46.
    Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22CrossRefGoogle Scholar
  47. 47.
    Kim YD, Dordick JS, Clark DS (2001) Siloxane-based biocatalytic films and paints for use as reactive coatings. Biotechnol Bioeng 72(4):475–482CrossRefGoogle Scholar
  48. 48.
    Ellerby LM, Nishida CR, Nishida F, Yamanaka SA, Dunn B, Valentine JS, Zink JI (1992) Encapsulation of proteins in transparent porous silicate glasses prepared by the sol-gel method. Science 255:1113–1115CrossRefGoogle Scholar
  49. 49.
    Fonseca LP, Cardoso JP, Cabral JMS (1993) Immobilization studies of an industrial penicillin acylase preparation on a silica carrier. J Chem Tech Biotechnol 58:27–37Google Scholar
  50. 50.
    Smith PK et al (1985) Measurements of protein using bicinhoninic acid. Anal Biochem 150:76–85CrossRefGoogle Scholar
  51. 51.
    Zaia DAM, Zaia CTBV, Lichtig J (1998) Determinação de Proteínas Totais via especrofotometria: vantagens e desvantagens dos métodos existentes. Quim Nova 21(6):787–793CrossRefGoogle Scholar
  52. 52.
    Pierre AC (2004) The sol-gel encapsulation of enzymes. Biocatal Biotransform 22(3):145–170CrossRefGoogle Scholar
  53. 53.
    Kim Y-D, Park CB, Clark DS (2001) Stable sol-gel microstructured and microfluidic networks for protein patterning. Biotechnol Bioeng 73:331–337CrossRefGoogle Scholar
  54. 54.
    Kawakami K, Yoshida S (1996) Thermal stabilization of lipase by sol-gel entrapment modified silicates formed on kieselguhr. J Ferment Bioeng 82:239–245CrossRefGoogle Scholar
  55. 55.
    Bergeron LM, Tokatlian T, Gomez L, Clark DS (2008) Redirecting the inactivation pathway of penicillin amidase and increasing amoxicillin production via a thermophilic molecular chaperone. Biotechnol Bioeng 102(2):417–424CrossRefGoogle Scholar
  56. 56.
    Arroyo M, Torres-Guzmán R, de la Mata I, Castillón MP, Acebal C (2002) A kinetic examination of penicillin acylase stability in water-organic solvent systems at different temperatures. Biocatal Biotransform 20(1):53–56CrossRefGoogle Scholar
  57. 57.
    Erarslan A (1994) Effect of polyol compounds on thermostability of penicillin G acylase obtained from a mutant of Escherichia coli ATCC 11105. Process Biochem 30:133–139Google Scholar
  58. 58.
    Meixner DL, Dyer PN (1999) Influence of sol-gel synthesis parameters on the microstructure of particulate silica xerogels. J Sol-Gel Sci Technol 14:223–232CrossRefGoogle Scholar
  59. 59.
    Greenspan L (1977) Humidity fixed points of binary saturated aqueous solutions. J Res Natl Bureau Standards-A Phys Chem 81A(1):89–96Google Scholar
  60. 60.
    Pagliaro M, Ciriminna R, Palmisano G (2007) The chemical effects of molecular sol–gel entrapment. Chem Soc Rev 36:932–940CrossRefGoogle Scholar
  61. 61.
    Ramakrishna SV, Sreedharan VP, Prema P (1988) In: Moo-Young M (ed) Bioreactor immobilized enzymes and cells. Elsevier Publishers, AmsterdamGoogle Scholar
  62. 62.
    Gill I, Ballesteros A (1998) Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers: an efficient and generic approach. J Am Chem Soc 120:8587–8598CrossRefGoogle Scholar
  63. 63.
    Li L, Choo ESG, Yi J, Ding J, Tang X, Xue J (2008) Superparamagnetic silica composite nanospheres (SSCNs) with ultrahigh loading of iron oxide nanoparticles via an oil-in-DEG microemulsion route. Chem Mater 20:6292–6294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Susana Bernardino
    • 1
    • 2
    • 3
  • Nídia Estrela
    • 2
    • 3
    • 4
  • Vanessa Ochoa-Mendes
    • 2
    • 3
  • Pedro Fernandes
    • 2
    • 3
  • Luís P. Fonseca
    • 2
    • 3
  1. 1.ESTM—School of Tourism and Maritime Technology, Marine Resources Research GroupPolytechnic Institute of LeiriaPenichePortugal
  2. 2.IBB—Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical EngineeringInstituto Superior TécnicoLisbonPortugal
  3. 3.Department of BioengineeringInstituto Superior TécnicoLisbonPortugal
  4. 4.IBB—Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural BiomedicineUniversidade do AlgarveFaroPortugal

Personalised recommendations