Journal of Sol-Gel Science and Technology

, Volume 58, Issue 2, pp 442–451

Biomaterials obtained by gelation of silica precursor with CO2 saturated water containing a carbonic anhydrase enzyme

Original Paper

Abstract

As part of an effort to develop biomaterials for the capture of CO2 catalyzed by a carbonic anhydrase enzyme, the effects of an aqueous CO2 saturated solution and a carbonic anhydrase on the gelation and texture of SiO2 gels derived from tetramethoxysilane (TMOS), were studied. Both aqueous CO2 and the enzyme were found to accelerate the gelation of silica, with a stronger effect when both the enzyme and CO2 saturated aqueous water, were used. According to the gel texture data, aqueous CO2 acted as an acid type catalyst, while the carbonic anhydrase acted as a weak base type catalyst. Moreover, a gel with a more granular visual aspect was obtained when both the enzyme and CO2 saturated water were used. The latter characteristic was consistent with a double action of the enzyme, first as a gelation catalyst on the silica precursor, secondly as a reverse protonation catalyst which accelerated the back nucleation of CO2 gas bubbles from aqueous HCO3 anions.

Keywords

Silica aerogels Texture Aqueous CO2 Carbonic anhydrase enzyme 

References

  1. 1.
    Benson SM, Surles T (2006) Carbon dioxide capture and storage: an overview with emphasis on capture and storage in deep geological formations. Proc IEEE 94:1795–1805CrossRefGoogle Scholar
  2. 2.
    Ge J, Cowan RM, Tu C, McGregor ML, Trachtenberg MC (2002) Enzyme-based CO2 capture for advanced life support. Life Support Biosph Sci 8:181–189Google Scholar
  3. 3.
    Druckenmiller ML, Maroto-Valer M (2005) Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Process Technol 86:1599–1614CrossRefGoogle Scholar
  4. 4.
    Liu N, Bond GM, Abel A, McPherson BJ, Stringer J (2005) Biomimetic sequestration of CO2 in carbonate form: role of produced waters and other brines. Fuel Process Technol 86:1615–1625CrossRefGoogle Scholar
  5. 5.
    Bond GM, Stringer J, Brandvold DK, Simsek FA, Medina M-G, Egeland G (2001) Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase. Energy Fuels 15:309–316CrossRefGoogle Scholar
  6. 6.
    Pocker Y, Bjorkquist DW (1977) Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H20 and D2O. Acid-base and metal ion catalysis. J Am Chem Soc 99:6537–6543CrossRefGoogle Scholar
  7. 7.
    Mirjafari P, Asghari K, Mahinpey N (2007) Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Ind Eng Chem Res 46:921–926Google Scholar
  8. 8.
    Favre N, Christ ML, Pierre AC (2009) Biocatalytic capture of CO2 with carbonic anhydrase and its transformation to solid carbonate. J Mol Cat B 60:163–170CrossRefGoogle Scholar
  9. 9.
    Lindskog S, Coleman JE (1973) The catalytic mechanism of carbonic anhydrase. Proc Nat Acad Sci U S A 70:2505–2508CrossRefGoogle Scholar
  10. 10.
    Tautermann CS, Voegele AF, Loerting T, Kohl I, Hallbrucker A, Mayer E, Liedl KR (2002) Towards the experimental decomposition rate of carbonic acid (H2CO3) in aqueous solution. Chem Eur J 8:66–73CrossRefGoogle Scholar
  11. 11.
    Pierre AC (2004) The sol-gel encapsulation of enzymes. A review. Biocatal Biotransformation 22:145–170CrossRefGoogle Scholar
  12. 12.
    Brownell PF, Bielig LM, Crof CPL (1991) Increased carbonic anhydrase activity in leaves of sodium-deficient C4 plants. Aust J Plant Physiol 18:589–592CrossRefGoogle Scholar
  13. 13.
    Li W, Yu L-J, He Q-F, Wu Y, Yuan D-X, Cao J-H (2005) Effects of microbes and their carbonic anhydrase on Ca2+ and Mg2+ migration in column-built leached soil-limestone karst systems. Appl Soil Ecol 29:274–281CrossRefGoogle Scholar
  14. 14.
    Belzil A, Parent C (2005) Méthodes de qualification des immobilizations chimiques d’une enzyme sur un support solide. Biochem Cell Biol 83:70–77CrossRefGoogle Scholar
  15. 15.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  16. 16.
    Buisson P, Hernandez C, Pierre M, Pierre AC (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285:295–302CrossRefGoogle Scholar
  17. 17.
    Reichenauer G, Scherer GW (2000) Ammonia-catalyzed silylation reactions of Cab-O-Sil with methoxymethylsilanes. J Non-Cryst Solids 277:162–172CrossRefGoogle Scholar
  18. 18.
    Barrett EP, Joyner LG, Halenda PH (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  19. 19.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  20. 20.
    Bertoluzza A, Fagnano C, Antonietta Morelli M, Gottardi V, Guglielmi M (1982) Raman and infrared spectra on silica gel evolving toward glass. J Non-Cryst Solids 48:117–128CrossRefGoogle Scholar
  21. 21.
    Scherer GW, Brinker CJ (1990) Hydrolysis and condensation of silicon alkoxides. In: Scherer GW, Brinker CJ (eds) Sol-Gel science. Academic Press, New-York, pp 108–145Google Scholar
  22. 22.
    Gremlich H-U (2001) Infrared and raman Spectroscopy. In: Guenzler H, Williams A (eds) Handbook of analytical techniques. Wiley-VCH Verlag GmbH 1, Weinheim pp 465–507Google Scholar
  23. 23.
    Socrates G (2004) Infrared and Raman characteristic group frequencies: tables and charts, 3rd edn. Wiley, ChichesterGoogle Scholar
  24. 24.
    Ueno A, Bennett CO (1978) Infrared study of CO2 adsorption on SiO2. J Catal 54:31–41CrossRefGoogle Scholar
  25. 25.
    Pierre AC, Pajonk GM (2002) Aerogels and their applications. Chem Rev 102:4243–4265CrossRefGoogle Scholar
  26. 26.
    Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132CrossRefGoogle Scholar
  27. 27.
    Zhang YF, Wu H, Li J, Li L, Jiang YJ, Jiang ZY (2008) Protamine-templated biomimetic hybrid capsules: efficient and stable carrier for enzyme encapsulation. Chem Mater 20:1041–1048CrossRefGoogle Scholar
  28. 28.
    Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 96:361–365CrossRefGoogle Scholar
  29. 29.
    Luckarift HR, Dickerson MB, Sandhage KH, Spain JC (2006) Rapid, room-temperature synthesis of antibacterial bio-nanocomposites of lysozyme with amorphous silica or titania. Small 2:640–643CrossRefGoogle Scholar
  30. 30.
    Abbate V, Bassindale AR, Brandstadt KF, Lawson R, Taylor PG (2010) Enzyme mediated silicon-oxygen bond formation; the use of Rhizopus oryzae lipase, lysozyme and phytase under mild conditions. Dalton Trans 39:9361–9368CrossRefGoogle Scholar
  31. 31.
    Frampton M, Vawda A, Fletcher J, Zelisko PM (2008) Enzyme-mediated sol–gel processing of alkoxysilanes. Chem Commun 5544–5546Google Scholar
  32. 32.
    Buisson P, El Rassy H, Maury S, Pierre AC (2003) Biocatalytic gelation of silica in the presence of a lipase. J Sol-Gel Sci Technol 278:373–379CrossRefGoogle Scholar
  33. 33.
    Pierre AC (1998) Introduction to Sol-Gel processing. Kluwer, Boston pp 120–158Google Scholar
  34. 34.
    Lippard SJ, Berg JM (1994) Principles of bioinorganic chemistry. University Science Books, Mill Valley, California pp 267–271Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nathalie Favre
    • 1
  • Yasser Ahmad
    • 1
  • Alain C. Pierre
    • 1
  1. 1.Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l’environnement de LyonVilleurbanneFrance

Personalised recommendations