Journal of Sol-Gel Science and Technology

, Volume 58, Issue 2, pp 360–365 | Cite as

Preparation, characterization and photocatalytic properties of TiO2 nanostructured spheres synthesized by the Sol–Gel method modified with ethylene glycol

  • K. Del Ángel-Sánchez
  • O. Vázquez-Cuchillo
  • M. Salazar-Villanueva
  • J. F. Sánchez-Ramírez
  • A. Cruz-López
  • A. Aguilar-Elguezabal
Original Paper

Abstract

Monodispersed nanostructured TiO2 spheres were obtained by the Sol–Gel method modified with ethylene glycol. The sample morphology and surface textural properties were characterized by X-ray diffraction (XRD), N2-physisorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and diffuse reflectance spectroscopy (DRS). The SEM image showed spheres with sizes ranging from 600 to 700 nm. In addition, HRTEM micrographs reveal hexagonal grains slightly elongated (20 nm). The powders present a BET surface area of 116 m2 g−1. Samples without thermal treatment and those treated at 400 °C both showed characteristic reflections of the anatase phase. The photocatalytic activity of the prepared TiO2 spheres was determined by degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution. Kinetics parameters have displayed than the nanostructured material present a reaction half-life time of 30 min and it was two times faster than commercial TiO2 (P25).

Keywords

TiO2 spheres Photocatalysis 2,4-Dichlorophenoxyacetic acid Sol–Gel 

References

  1. 1.
    Gutierrez Fuentes R, Pescador Rojas JA, Jiménez-Pérez JL, Sanchez Ramirez JF, Cruz-Orea A, Mendoza-Alvarez GJ (2008) Appl Surf Sci 255:781CrossRefGoogle Scholar
  2. 2.
    Salazar Villanueva M, Romero AH, Bautista Hernández A (2009) Nanotech 20:465709CrossRefGoogle Scholar
  3. 3.
    Cruz-López A, Vázquez-Cuchillo O, Juárez Ramírez I, Bautista-Carrillo LM, Zarazua-Morin E (2008) J Ceramic Process Res 9:474Google Scholar
  4. 4.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025CrossRefGoogle Scholar
  5. 5.
    Yin Y, Alivisatos AP (2005) Nature 437:664CrossRefGoogle Scholar
  6. 6.
    Torres-Martínez LM, Gómez R, Vázquez-Cuchillo O, Juárez-Ramírez I, Cruz-López A, Alejandre Sandoval FJ (2010) Catal Commun 12:268–271. doi:10.1016/j.catcom.2010.09.032 CrossRefGoogle Scholar
  7. 7.
    Tchoul MN, Fillery SP, Koerner H, Drummy LF, Oyerokun FT, Mirau PA, Durstock MF, Vaia RA (2010) Chem. Mater 22:1749Google Scholar
  8. 8.
    Jungbase K, Jay WG (2003) Nano Lett 3:1219CrossRefGoogle Scholar
  9. 9.
    Zhang JT, Liu JF, Peng Q, Wang X, Li YD (2006) Chem Mater 18:867CrossRefGoogle Scholar
  10. 10.
    Deng Z, Yan H, Liu Y (2009) J Am Chem Soc 131:17744CrossRefGoogle Scholar
  11. 11.
    Smith AM, Nie S (2010) Acc Chem Res 43:190CrossRefGoogle Scholar
  12. 12.
    Liane MR, Li SF, Frank HQ, Rosenzweig Z (2005) Langmuir 21:4277CrossRefGoogle Scholar
  13. 13.
    Deng H, Li X, Peng Q, Wang X, Chen J, Li Y (2005) Angew Chem Int Ed 44:2782CrossRefGoogle Scholar
  14. 14.
    Vázquez-Cuchillo O, Cruz-López A, Bautista-Carrillo LM, Bautista-Hernández A, Torres Martínez LM, Lee SW (2010) Res Chem Intermed 36:103CrossRefGoogle Scholar
  15. 15.
    Galindo F, Gómez R, Aguilar M (2008) J Mol Catal A Chem 281:119CrossRefGoogle Scholar
  16. 16.
    Murugan K, Rao TN, Gandhi AS, Murty BS (2009) J Catal Commun 11:518CrossRefGoogle Scholar
  17. 17.
    Wang J, Bai Y, Wu M, Yin J, Zhang WF (2009) J Power Sources 191:614CrossRefGoogle Scholar
  18. 18.
    Chattopadhyay J, Kim HR, Moon SB, Pak D (2008) Int J Hydrogen Energy 33:3270CrossRefGoogle Scholar
  19. 19.
    Wang H, Hu Y, Zhang L, Li C (2010) Ind Eng Chem Res 49:3654CrossRefGoogle Scholar
  20. 20.
    Titirici MM, Antonietti M, Thomas A (2006) Chem Mater 18:3808CrossRefGoogle Scholar
  21. 21.
    Qian HS, Lin GF, Zhang YX, Gunawan P, Xu R (2007) Nanotech 18:355602CrossRefGoogle Scholar
  22. 22.
    Zhang YX, Li GH, Wu YC, Xie T (2005) Mater Res Bull 40:1993CrossRefGoogle Scholar
  23. 23.
    Lim KT, Hwang HS, Ryo W, Johnston KP (2004) Langmuir 20:2466CrossRefGoogle Scholar
  24. 24.
    Kim KD, Kim SH, Kim HT (2005) Colloids Surf A 254:99CrossRefGoogle Scholar
  25. 25.
    Xuchuan J, Thurston H, Younan X (2003) Adv Mater 15:1205CrossRefGoogle Scholar
  26. 26.
    Hyung Kyun Y, Gi-Ra Y, Se-Heon K, Seung-Man Y (2007) Lasers and electro-optics—pacific rim, Conference on. doi:10.1109/CLEOPR.2007.4391348
  27. 27.
    Ao Y, Xu J, Fu D, Yuan Ch (2009) Micropo Mesopo Mater 118:382CrossRefGoogle Scholar
  28. 28.
    Pal M, García-Serrano J, Santiago P, Pal U (2007) J Phys Chem C 111:96CrossRefGoogle Scholar
  29. 29.
    Xiaofang L, Kangle L, Kejian D, Junfeng T, Rong S, Jie S, Chen L (2009) Mater Sci Eng B 158:40CrossRefGoogle Scholar
  30. 30.
    Hua GY, Hua CZ (2004) J Phys Chem B 108:3492CrossRefGoogle Scholar
  31. 31.
    Cullity BD (1978) Elements of X-ray diffraction. Wesley, ReadingGoogle Scholar
  32. 32.
    Escobedo Morales A, Sánchez Mora E, Pal U (2007) Rev Mex Fis S 53:18Google Scholar
  33. 33.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 177:32–33Google Scholar
  34. 34.
    Xuchuan J, Thurston H, Younan X (2003) Adv Mater 15(14):1205–1209CrossRefGoogle Scholar
  35. 35.
    Oskam G, Nellore A, Lee PR, Searson PC (2003) J Physics Chem B 107:1734–1738CrossRefGoogle Scholar
  36. 36.
    Kim YJ, Yong S, Chai X, Lee W (2007) Langmuir 23(19):9567–9571CrossRefGoogle Scholar
  37. 37.
    Li D, Haneda H (2003) Chemosphere 51:129–137CrossRefGoogle Scholar
  38. 38.
    Liao DL, Liao BQ (2007) J Photochem Photobiol A Chem 187:363–369CrossRefGoogle Scholar
  39. 39.
    Kudo A, Meseke Y (2009) Chem Soc Rev 38:253–278CrossRefGoogle Scholar
  40. 40.
    Dong F, Zhao W, Wu Z, Guo S (2009) J Hazard Mater 162:763–770CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • K. Del Ángel-Sánchez
    • 1
  • O. Vázquez-Cuchillo
    • 2
  • M. Salazar-Villanueva
    • 3
  • J. F. Sánchez-Ramírez
    • 4
  • A. Cruz-López
    • 2
  • A. Aguilar-Elguezabal
    • 1
  1. 1.Centro de Investigación en Materiales Avanzados (CIMAV)ChihuahuaMéxico
  2. 2.Facultad de Ingeniería CivilUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico
  3. 3.Facultad de IngenieríaUniversidad Autónoma de PueblaPueblaMéxico
  4. 4.Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico NacionalMéxicoMéxico

Personalised recommendations