Journal of Sol-Gel Science and Technology

, Volume 58, Issue 1, pp 345–354 | Cite as

Preparation, photocatalytic activity and mechanism of nano-Titania/Nafion hybrid membrane

Original Paper

Abstract

Nano-Titania/Nafion (TiO2/Nafion) hybrid membranes were prepared by recasting, using Nafion solution and TiO2 anatase hydrosol as the raw materials. The microstructure of the hybrid membrane was characterized by X-ray diffraction, high-resolution transmission electron microscopy (HR-TEM), X-ray Photoelectron Spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR). The photocatalytic properties of TiO2/Nafion hybrid membranes were evaluated. Furthermore, endurance of photocatalytic activity of the hybrid membrane was investigated. The results indicate that the TiO2 Nanoparticles are bounded to Nafion molecule via Ti-O-S bonds and the formed flocculates are distributed homogeneously throughout the recasting Nafion membrane, while the initial pure anatase TiO2 nanoparticles remain intact in re-crystallized membrane. The hybrid membranes possessed excellent photocatalytic activities with and without H2O2. Moreover, the degradation of photocatalytic activities has been better controlled with the presence of H2O2.

Keywords

Titania Nafion Hybrid membrane Microstructure Photocatalysis 

References

  1. 1.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  2. 2.
    Dijkstra MFJ, Koerts ECB, Beenackers AACM, Wesselingh JA (2003) Performance of immobilized photocatalytic reactors in continuous mode. AIChE J 49:734–744CrossRefGoogle Scholar
  3. 3.
    Azrague K, Aimar P, Benoit-Marquie F, Maurette MT (2007) A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water. Appl Catal B 72:197–204CrossRefGoogle Scholar
  4. 4.
    Chin SS, Lim TM, Chiang K, Fane AG (2007) Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor. Chem Eng J 130:53–63CrossRefGoogle Scholar
  5. 5.
    Bosc F, Ayral A, Guizard C (2005) Mesoporous anatase coatings for coupling membrane separation and photocatalyzed reactions. J Membr Sci 265:13–19CrossRefGoogle Scholar
  6. 6.
    Zhang H, J Chen J, Zhang G, Yang Z, Ni L (2008) Organic dyeing wastewater treatment with photocatalysis and membrane separation hybrid system. In: IWA regional conference on membrane technologies in water and waste water treatment, Moscow, Russia 2–4Google Scholar
  7. 7.
    Weaver JD, Tasset EL, Fry WE (1992) Supported fluorocarbonsulfonic acid catalysts. Catal Today 14:195CrossRefGoogle Scholar
  8. 8.
    Vohra MS, Tanaka K (2001) Enhanced photocatalytic activity of Nafion-coated TiO2. Environ Sci Technol 35:411–415CrossRefGoogle Scholar
  9. 9.
    Liu P, Bandara J, Lin Y, Elgin D, Allard LF, Sun YP (2002) Formation of nanocrystalline titanium dioxide in perfluorinated ionomer membrane. J Langmuir 18:10398–10401CrossRefGoogle Scholar
  10. 10.
    Bertoncello P, Notargiacomo A, Nicolini C (2005) Langmuir–Schaefer films of Nafion with incorporated TiO2 nanoparticles. J Langmuir 21:172–177CrossRefGoogle Scholar
  11. 11.
    Premkumar J, Ramaraj R (1998) Photocatalytic reduction of dioxygen by colloidal semiconductors and macrocyclic cobalt(III) complexes in Nafion and cellulose matrices. J Mol Catal A:Chem 132:21–32CrossRefGoogle Scholar
  12. 12.
    Shi LJ, Yang R, Li M (2006) Nanocrystalline TiO2: crystal structure controlled synthesis via low temperature hydrolysis method and surface texture. Chin J Inorg Chem 22:1196–1202Google Scholar
  13. 13.
    Cai ZQ, Gao JW, Shen QH, Wang PP, Yang H (2008) Influence of acid catalyst on crystalline microstructure and photocatalytic property of TiO2 sol. Rare Metal Mat Eng 37:62–65Google Scholar
  14. 14.
    Klug HP, Alexander LE (1959) X-ray diffraction procedures. John Wiley and Sons, New YorkGoogle Scholar
  15. 15.
    Xu HF, Xu L (2006) Effects of solvents on the performances of perfluorosulfonated recast membrane. J Chem Eng Chin Univ 20:978–982Google Scholar
  16. 16.
    Raj KJA, Shanmugam R, Mahalakshmi R, Viswanathan B (2010) XPS and IR spectral studies on the structure of phosphate and sulphate modified titania–a combined DFT and experimental study. Ind J Chem 49A:9–17Google Scholar
  17. 17.
    Schulze M, Lorenz M, Wagner N, Gülzow E (1999) XPS analysis of the degradation of Nafion. Fresenius J Anal Chem 365:106–113CrossRefGoogle Scholar
  18. 18.
    Baglio V, Aricò AS, Di Blasi A, Antonucci V, Antonucci PL, Licoccia S, Traversa E, Serraino Fiory F (2005) Nafion-TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochim Acta 50:1241–1246CrossRefGoogle Scholar
  19. 19.
    Diebold U, Madey TE (1998) TiO2 by XPS. Surf Sci Spectra 4:227–231CrossRefGoogle Scholar
  20. 20.
    Alphonse P, Bleta R, Soules R (2009) Effect of PEG on rheology and stability of nanocrystalline titania hydrosols. J Colloid Interface Sci 337:81–87CrossRefGoogle Scholar
  21. 21.
    Batchelor GK (1967) An introduction to fluid dynamics. Cambridge University Press, EnglandGoogle Scholar
  22. 22.
    Gerber PR, Moore MA (1977) Comments on the theory of steric stabilization. Macromolecule 10:476–481CrossRefGoogle Scholar
  23. 23.
    Osmond DW, Vincent B, Waite FA (1975) Steric stabilisation: a reappraisal of current theory. Colloid Polym Sci 253:676–682CrossRefGoogle Scholar
  24. 24.
    Liang ZX, Chen WM, Liu JG, Wang SL, Zhou ZH, Li WZ, Sun GQ, Xin Q (2004) FT-IR study of the microstructure of Nafion membrane. J Membrane Sci 233:39–44CrossRefGoogle Scholar
  25. 25.
    Ludvigsson M, Lindgren J, Tegenfeldt J (2000) FTIR study of water in cast Nafion films. Electrochim Acta 45:2267–2271CrossRefGoogle Scholar
  26. 26.
    Lang WZ, Tong W, Yang H, Xu ZL (2006) Microstructure and thermal properties of perfluorosulfonic acid regenerated resin. J East China Univ Sci Tech (Natural Science Edition) 32:388–392Google Scholar
  27. 27.
    Park HW, Choi WY (2006) Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated TiO2 nanoparticles: an alternative approach to sensitizer anchoring. Langmuir 22(6):2906–2911CrossRefGoogle Scholar
  28. 28.
    Ogino C, Dadjour MF, Iida Y, Shimizu N (2008) Decolorization of methylene blue in aqueous suspensions of titanium peroxide. J Hazard Mater 153:551–556CrossRefGoogle Scholar
  29. 29.
    Ohno T, Masaki Y, Hirayama S, Matsumura M (2001) TiO2-photocatalyzed epoxidation of 1-decene by H2O2 under visible light. J Catal 204:163–168CrossRefGoogle Scholar
  30. 30.
    Li XZ, Chen CC, Zhao JC (2001) Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17:4118–4122CrossRefGoogle Scholar
  31. 31.
    Fan FF, Liu HY, Bard AJ (1985) Integrated chemical systems: photocatalysis at TiO2 incorporated into Nafion and clay. J Phys Chem 89:4418–4420CrossRefGoogle Scholar
  32. 32.
    Rao YF, Chu W (2010) Linuron decomposition in aqueous semiconductor suspension under visible light irradiation with and without H2O2. Chem Eng J 158:181–187CrossRefGoogle Scholar
  33. 33.
    Yin S, Hasegawa H, Maeda D, Ishitsuka M, Sato T (2004) Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution-reprecipitation process. J Photochem Photobio A Chem 163:1–8CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xingeng Ding
    • 1
  • Simin Zhou
    • 1
  • Lifang Jiang
    • 2
  • Hui Yang
    • 1
  1. 1.Department of Materials Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Department of Chemistry and Chemical EngineeringMingjiang CollegeFuzhouChina

Personalised recommendations